Effectiveness of exercise on fatigue and sleep quality in fibromyalgia: a systematic review and meta-analysis of randomised trials

Fernando Estévez-López, Cristina Maestre-Cascales, Deborrah Russell, Inmaculada C. Álvarez-Gallardo, María Rodriguez-Ayllon, Ciara M. Hughes, Gareth W. Davison, Borja Sañudo, Joseph G. McVeigh

PII: S0003-9993(20)30434-2

DOI: https://doi.org/10.1016/j.apmr.2020.06.019

Reference: YAPMR 57905

To appear in: ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION

Received Date: 28 March 2020

Revised Date: 26 June 2020

Accepted Date: 29 June 2020

Please cite this article as: Estévez-López F, Maestre-Cascales C, Russell D, Álvarez-Gallardo IC, Rodriguez-Ayllon M, Hughes CM, Davison GW, Sañudo B, McVeigh JG, Effectiveness of exercise on fatigue and sleep quality in fibromyalgia: a systematic review and meta-analysis of randomised trials, *ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION* (2020), doi: https://doi.org/10.1016/j.apmr.2020.06.019.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc. on behalf of the American Congress of Rehabilitation Medicine

Effectiveness of exercise on fatigue and sleep quality in fibromyalgia: a systematic review and meta-analysis of randomised trials

Running head: Exercise, fatigue and sleep in fibromyalgia

Fernando Estévez-López^{1,*,} Cristina Maestre-Cascales^{2,*}, Deborrah Russell³, Inmaculada C. Álvarez-Gallardo⁴, María Rodriguez-Ayllon⁵, Ciara M. Hughes³, Gareth W. Davison⁶, Borja Sañudo⁷, Joseph G. McVeigh⁸

¹ Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; ² LFE Research Group, Department of Health and Human Performance, Universidad Politécnica de Madrid, Madrid, Spain; ³ Institute of Nursing and Health Research, School of Health Sciences, Ulster University, Northern Ireland, UK; ⁴ Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain; ⁵ PROmoting FITness and Health Through Physical Activity (PROFITH) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain; ⁶ Sport and Exercise Science Research Institute, Ulster University, Northern Ireland, UK; ⁷ Department of Physical Education and Sport, University of Seville, Seville, Spain; ⁸ Physiotherapy, School of Clinical Therapies, College of Medicine and Health, University College Cork, Cork, Ireland.

* Equally contribution.

Correspondence to Fernando Estévez-López, PhD, Postdoctoral Researcher, Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands. Tel: (+31) 30 253 4700; E-mail: fer@estevez-lopez.com

- 1 Effectiveness of exercise on fatigue and sleep quality in fibromyalgia: a systematic
- 2 review and meta-analysis of randomised trials
- 3
- 4 Abstract
- 5

6 **Objectives**: To determine the effects of exercise on fatigue and sleep quality in

7 fibromyalgia (primary aim) and to identify which type of exercise is the most effective

8 in achieving these outcomes (secondary aim).

9 Data sources: PubMed and Web of Science were searched from inception until October
10 18th, 2018.

11 Study selection: Eligible studies contained information on population (fibromyalgia), 12 intervention (exercise) and outcomes (fatigue or sleep). Randomised controlled trials 13 (RCTs) testing the effectiveness of exercise in comparison to usual care and randomised 14 trials (RTs) comparing the effectiveness of two different exercise interventions were 15 included for the primary and secondary aims of the present review, respectively. Two 16 independent researchers performed the search, screening and final eligibility of the 17 articles. From 696 identified studies, 17 RCTs (n=1003) were included for fatigue and 18 12 RCTs (n=731) for sleep. Furthermore, 21 RTs compared the effectiveness of 19 different exercise interventions (n=1254).

20 Data extraction: Two independent researchers extracted the key information from each
21 eligible study.

effects from RCTs and from RTs (primary and secondary aims). Standardised mean

Data synthesis: Separate random-effect meta-analyses were performed to examine the

differences (SMD) effect sizes were calculated using Hedges' adjusted g. Effect sizes of

0.2, 0.4 and 0.8 were considered small, moderate and large. In comparison to usual care,

exercise had moderate effects on fatigue and a small effect on sleep quality; SMD (95%

confidence interval) = -0.47 (-0.67 to -0.27, p < 0.001) and -0.17 (-0.32 to -0.01, p =

0.04). RTs in which fatigue was the primary outcome were the most beneficial for

lowering fatigue. Additionally, meditative exercise programs were the most effective

on enhancing sleep	quality in fibromy	algia.	Meditative

exercise programs may be

Conclusions: Exercise is moderately effective for lowering fatigue and has small effects

33 considered for improving sleep quality in fibromyalgia.

34

22

23

24

25

26

27

28

29

30

31

32

35 **PROSPERO registration number** CRD42018118005

- 36 **Keywords:** Chronic pain; Sleeplessness; Management; Physical exercise;
- 37 Rehabilitation; Training; Vitality.

for improving sleep quality.

38 INTRODUCTION

39

41	More than 80% of people with fibromyalgia experience severe fatigue [1] or poor sleep
42	quality [2], both of which are identified by people with fibromyalgia and healthcare
43	providers as priority targets for treatment. Increased fatigue and poor sleep quality are
44	therefore acknowledged as core symptoms in the updated fibromyalgia diagnostic
45	criteria [3]. Despite the importance of fatigue and sleep quality, most of the research to
46	date has traditionally focused on pain-related outcomes. For instance, the European
47	League Against Rheumatism (EULAR), highlights that exercise is the only therapy
48	supported by 'strong' evidence for the management of fibromyalgia [4]. However, the
49	recommendations were based on previous reviews that provided evidence of the
50	benefits of exercise for pain but unclear for other symptoms [5–9]
51	In their earliest works, Busch and colleagues performed comprehensive reviews
52	including all types of exercise (e.g., aerobic, resistance and flexibility training) [5,9].
53	
55	These reviews concluded that it was unknown the effects of exercise on fatigue or sleep
54	These reviews concluded that it was unknown the effects of exercise on fatigue or sleep due to the paucity of research by that time. A number of subsequent systematic reviews
54	due to the paucity of research by that time. A number of subsequent systematic reviews
54 55	due to the paucity of research by that time. A number of subsequent systematic reviews focused on specific types of exercise have been published (i.e., flexibility [10], aerobic
54 55 56	due to the paucity of research by that time. A number of subsequent systematic reviews focused on specific types of exercise have been published (i.e., flexibility [10], aerobic [6], resistance [8] and vibration [7] training) which have explored the effects of exercise
54 55 56 57	due to the paucity of research by that time. A number of subsequent systematic reviews focused on specific types of exercise have been published (i.e., flexibility [10], aerobic [6], resistance [8] and vibration [7] training) which have explored the effects of exercise in fatigue and sleep quality among other outcomes. Although the contribution of these
54 55 56 57 58	due to the paucity of research by that time. A number of subsequent systematic reviews focused on specific types of exercise have been published (i.e., flexibility [10], aerobic [6], resistance [8] and vibration [7] training) which have explored the effects of exercise in fatigue and sleep quality among other outcomes. Although the contribution of these reviews to the evidence base is acknowledged, the decision to narrow the scope of each
54 55 56 57 58 59	due to the paucity of research by that time. A number of subsequent systematic reviews focused on specific types of exercise have been published (i.e., flexibility [10], aerobic [6], resistance [8] and vibration [7] training) which have explored the effects of exercise in fatigue and sleep quality among other outcomes. Although the contribution of these reviews to the evidence base is acknowledged, the decision to narrow the scope of each review resulted in the inclusion of a restricted number of studies. For instance, for

62	about the effects of exercise interventions on fatigue and sleep in fibromyalgia. In
63	comparison to previous reviews, a recent systematic review has focused on mixed
64	exercise training; i.e., where two or more types of exercise are combined [11]. This
65	review included a larger number of studies (i.e., 11 studies conducted in a total sample
66	of 493 adults with fibromyalgia) and concluded that the effect of mixed exercise
67	resulted in improvements in fatigue, while omitted the study of sleep quality [11]. To
68	date no review has summarised all relevant literature on the effectiveness of exercise
69	interventions (of any type) on fatigue and sleep quality in fibromyalgia, in doing so the
70	current review will include a large sample size and accurately estimate, for the first
71	time, the effects of physical exercise on these two outcomes.
72	The aims of this systematic review were: (i) to determine the effectiveness of exercise
73	for reducing fatigue and improving sleep quality in people with fibromyalgia (primary
74	aim), and (ii) to identify which type of exercise interventions might be the most
75	effective in achieving these outcomes (secondary aim).
76	

METHODS

A multidisciplinary and international task force was set up to conduct this review. The PRISMA guidelines were used to guide this systematic review and meta-analysis [12]. The protocol of the present review was specified in advance and registered in the PROSPERO database (registration number, CRD42018118005).

	Journal Pre-proof
84	
85	Data Sources and Searches
86	
87	
88	PubMed and Web of Science were searched from inception until October 18th, 2018.
89	Search terms used in PubMed were: "Fibromyalgia"[MeSH] AND ("Exercise"[MeSH])
90	OR "Training"[All Fields]) OR "Yoga"[MeSH]) OR "Tai Ji"[MeSH]) OR
91	"Qigong"[MeSH]) OR "Hydrotherapy"[MeSH]) OR "body awareness"[Title/Abstract])
92	OR danc*[Title/Abstract]). In Web of Science, the search terms were:
93	TI=(fibromyalgia) AND TI=("exercise" OR "training" OR "yoga" OR "tai chi" OR "tai
94	ji" OR qigong OR hydrotherapy OR "physical activity" OR "body awareness" OR
95	danc*).
96	
97	Study Selection
98	
99	
100	Two independent researchers (FEL and CMC), performed the search, screened the titles
101	and abstracts of all retrieved articles and examined the final eligibility of the full-text
102	articles. When a paper did not report data on fatigue or sleep quality but the study used

103 questionnaires including these outcomes, the authors were contacted for further

	Journal 110-p1001
104	information. No restrictions were applied for language. This review followed the PICOS
105	framework.
106	
107	Population: adults with fibromyalgia, diagnosed using one of the recognised American
108	College of Rheumatology (ACR) criteria: 1990, 2010, 2011, or 2016.
109	Intervention (exposure): based on exercise. Mixed interventions that consisted of
110	exercise combined with other interventions (i.e., co-interventions) were considered, so
111	long as exercise comprised at least, 50% of the intervention.
112	
113	Comparison: studies should have either (i) an intervention group with exercise and a
114	non-intervention control group (e.g., treatment as usual); or (ii) two exercise groups.
115	Therefore, the primary sub-set of studies included randomised controlled trials (RCT)
116	and the second sub-set of studies included randomised trials (RT).
117	
118	Outcome: fatigue and sleep quality. When a study included more than one assessment
119	per outcome, all the figures were extracted but only the most common assessment
120	among the included studies was meta-analysed.
121	
122	Study design: RCTs and RTs were included for the primary and secondary aims,

123 respectively.

125 Data Extraction and Quality Assessment

126

127

Two independent researchers (CCM and DR) extracted the key information from each eligible study. When the information to be extracted was unavailable, authors were contacted. Disagreements were solved in a consensus meeting between the independent reviewers with a third reviewer (CMH).

132

133 The GRADE framework was used to assess the quality of the evidence across studies 134 for fatigue and sleep quality separately. Risk of bias of individual studies was assessed 135 using the Cochrane Risk of Bias tool. Studies with a score of, at least, five points were 136 considered as having high risk of bias. *Inconsistency* across studies was considered serious when heterogeneity was high ($I^2 > 50\%$). *Indirectness* was considered serious 137 138 when interventions included both exercise and additional components (i.e., co-139 interventions). *Imprecision* was considered serious when the 95% confidence interval 140 (CI) was wide and crossed the line of no effect, and as such the interpretation of the data 141 would be different if the true effect were at one end of the CI or the other. Finally, 142 publication bias was assessed via funnel plots.

Two researchers independently assessed risk of bias (ICAG and MRA) and the

inconsistency, indirectness, imprecision, and publication bias of the included (FEL and

JGMcV) of each eligible study. Disagreements on these assessments were solved in a

- consensus meeting between the independent reviewers with a third reviewer (CMH).

- **Data Synthesis and Analysis**

149	
150	Data Synthesis and Analysis
151	
152	
153	For the primary aim, quantitative synthesis of RCTs (i.e., meta-analyses) were
154	performed using Review Manager V.5.3. (Cochrane Collaboration, Copenhagen,
155	Denmark). Statistical significance was set at p<0.05. Standardised mean differences
156	(SMD) between the exercise and control groups were computed for both outcomes
157	separately. When a control group was used as a comparator twice in the same study, we
158	halved the sample size of the control group. Weighted mean differences were calculated
159	using a random effects model. Heterogeneity was measured using the I^2 statistic (the
160	percentage of total variability attributed to between-study heterogeneity). When
161	heterogeneity was high ($I^2 \ge 50\%$), further explorations based on subgroups analyses
162	were computed. SMD effect sizes were calculated using Hedges' adjusted g (similar to
163	Cohen's d). Effect sizes of 0.2, 0.4 and 0.8 were considered small, moderate and large,
164	respectively.

166 For the secondary aim, a narrative synthesis structured around each outcome was 167 conducted. When at least three of the included studies presented similar comparisons, 168 we performed meta-analyses using the same methods that have been described for the 169 primary aim. 170 171 172 RESULTS 173 174 **Study selection and characteristics** 175 176 177 Thirty-seven unique studies were included in this review [13–49]. Of them, four studies 178 included 3-arms (i.e., control group and two exercise intervention groups, each one with 179 a different exercise training such as aerobic in a group and flexibility in the another 180 group) and therefore they were included for addressing both aims of the present review 181 [40–43]. Thus, a total 20 RCTs [13–20,25,36,40–49] and 21 RTs [21–24,26–35,37–43] 182 were included in the review. Figure 1 displays a PRISMA diagram. 183 184 From the 20 included RCTs that compared the effectiveness of exercise vs. usual care, 9 185 included both outcomes of interest [14,16,17,19,20,41,43,44,46], 8 included only

- 186 fatigue [13,15,18,25,36,40,42,50] and 3 included only sleep quality [45,47,49]. From
- 187 the 21 included RTs that compared the effectiveness of different exercise interventions,
- 188 12 included both outcomes of interest [21–23,27,28,30,31,33,37,39,41,43], 7 included
- 189 only fatigue [24,26,29,32,35,40,42], and 2 included only sleep quality [34,38]. A
- 190 summary of the characteristics of the RCTs and RTs included in the present review is
- 191 presented in Supplementary Tables S1 and S2, respectively.

192

- 193 A moderate risk of bias was present in most of the included RCTs and RTs (see
- 194 Electronic Supplementary Figures S1 and S2 for overall summaries and Electronic
- 195 Supplementary Figures S3 and S4 for specific information on each individual included
- 196 work per study design). No study reported having conflicts of interests.

197

198 Synthesis of the data

199

200

Figure 2 presents a meta-analysis conducted in 1003 people with fibromyalgia (61% randomly allocated into exercise interventions). In comparison to usual care, exercise interventions were effective for reducing fatigue in fibromyalgia; pooled SMD (95% CI) = -0.47 (-0.67 to -0.27). This finding was robust across two sensitivity analyses, as showed in Supplementary Figures S5 and S6: (i) when a study with high risk of bias [40] was not included in the meta-analysis; pooled SMD (95% CI) = -0.49 (-0.71 to -0.27), (ii) when fixed effects model were computed; pooled SMD (95% CI) = -0.40 (- 208 0.53 to -0.26). Supplementary Figure S7 presents the funnel plot, which did not indicate209 publication bias.

210

211	Due to the high heterogeneity (i.e., $I^2=51\%$) observed across RCTs testing the effects of
212	exercise on fatigue, we explored several post hoc analyses. Most of them were not
213	significant as the effects on fatigue were similar between (i) levels of adherence: studies
214	in which participants had to attend to, at least, 80% of the training sessions (i.e,
215	adherence) to be included in the analyses and those studies with a lower or no adherence
216	criterion, (ii) gender of participants: studies in which only women participated vs those
217	in which both genders were included, (iii) type of intervention: only exercise vs co-
218	interventions, (iv) type of exercise: meditative exercise programs (i.e., Tai Chi, Yoga
219	and Quigong) vs others (i.e., aerobic, muscular resistance and flexibility), (v) sample
220	size, those with at least 20 participants in each group vs the others, (vi) type of setting in
221	which exercise was performed: land-based vs water-based, (vii) training intensity: low-
222	to-moderate vs moderate-to-high. Supplementary figures S8 to S14 show all these non-
223	significant findings. Interestingly, those studies in which fatigue was the primary
224	outcome (Figure 3) and employed a shorter (less than 24 weeks) non-aerobic exercise
225	intervention resulted in greater impact on fatigue (greater effect sizes) than comparative
226	studies; Supplementary Figures S15 and S16.

227

Figure 4 presents a meta-analysis conducted in 731 people with fibromyalgia (59%
randomly allocated into exercise interventions). In comparison to usual care, exercise
interventions had a small effect on enhancing sleep quality in fibromyalgia; pooled

1	1
ᆂ	~

• . • • .

231	SMD (95% CI) = -0.17 (-0.32 to -0.01). This finding was robust across two sensitivity
232	analyses, as showed in Supplementary Figures S17 and S18: (i) when a study with high
233	risk of bias [45] was not included in the meta-analysis; pooled SMD (95% CI) = -0.19 (
234	0.35 to -0.02), (ii) when fixed effects model were computed; pooled SMD (95% CI) = -
235	0.17 (-0.32 to -0.02). Due to the small heterogeneity (i.e., $I^2 = 5\%$), post hoc analyses
236	were not needed. Supplementary Figure S19 presents the funnel plot, which did not
237	indicate publication bias.
238	

Table 1 shows that when comparing exercise vs. usual care, there was 'low to moderate'
quality evidence for the beneficial effects of exercise on fatigue, while the evidence was
'moderate' for benefits on sleep quality.

242

243 In the 21 RTs included in the present review, a wide range of exercise interventions 244 were implemented and compared in a total of 1254 people with fibromyalgia (all 245 randomly allocated into different interventions). Thus, it was difficult to perform robust 246 comparisons. However, we were able to quantify one comparison for sleep quality and 247 three for fatigue. First, when comparing different types of exercise, meditative exercise 248 programs were more effective for improving sleep quality but not for lowering fatigue; 249 Figure 5, pooled SMD (95% CI) = -0.80 (-1.57 to -0.02) and Supplementary Figure S20, 250 pooled SMD (95% CI) = -0.39 (-0.88 to 0.11), respectively. Second, the effectiveness of 251 resistance vs flexibility training was similar for fatigue; Supplementary Figure S21, 252 pooled SMD (95% CI) = -1.64 (-4.31 to 1.02). Third, the effectiveness of water vs land-

253	based exercise was also similar for fatigue; Supplementary Figure S22, pooled SMD
254	(95% CI) = 0.00 (-0.42 to 0.43).

DISCUSSION

259	This systematic review set out to determine the effectiveness of exercise on fatigue and
260	sleep quality in those with fibromyalgia and to identify which type of exercise
261	interventions might be the most effective in achieving these outcomes. In the current
262	review we have found that, in comparison to usual care, exercise has moderate effects
263	for lowering fatigue and small effects for improving sleep quality. We have also
264	observed that, in comparison of other types of exercise, meditative exercise programs
265	were more effective for improving sleep quality but not for lowering fatigue. In
266	interpreting the findings of this review a number of factors must to be noted. First, most
267	of the studies were based on aerobic exercise. Thus, the effect sizes of the present meta-
268	analyses may reflect more accurately the effectiveness of aerobic training on fatigue and
269	sleep quality than the effects of other types of exercise. Indeed, we observed that those
270	exercise interventions that did not include aerobic exercise seemed to be more effective
271	at reducing fatigue. Second, the effects of exercise on fatigue were highly variable
272	across studies ($I^2 = 51\%$) and remarkably higher when fatigue was the main outcome.
273	Third, there is a lack of high quality studies in the field and consequently the quality of
274	evidence provided in the present review is low to moderate for the effectiveness of
275	exercise in reducing fatigue (the evidence is in favour of exercise but the effect size is

unclear, likely to be moderate) and moderate for small effects of exercise (of any type)on enhancing sleep quality.

278

279 Effectiveness of exercise for reducing fatigue in fibromyalgia

280

281

282 Due to the limited number of studies included in previous meta-analyses, their findings 283 were inconclusive and inconsistent. For example, Busch and colleagues meta-analysed 284 two resistance training studies (n=81) showing significant pooled reductions on fatigue 285 (p<0.001) [8]. However, Bidonde and colleagues have recently meta-analysed four 286 aerobic exercise studies (n=286) [6] in which the p-value of the pooled effects for the 287 exercise group was 0.06. Recently, Bidonde and colleagues have meta-analysed a 288 sample size of 493 adults with fibromyalgia estimating that the effects of mixed 289 exercise training (i.e., where two or more types of exercise are combined) on fatigue 290 were significant (p<0.001) [11]. Using similar statistical methods to previous meta-291 analyses but in a larger sample size (n=1003), our pooled estimation showed that 292 exercise produces significant and probably a meaningful (moderate effect size) 293 reduction in fatigue in fibromyalgia. Thus, the comprehensive approach followed in the 294 present meta-analysis allowed us to robustly determine, for the first time, the overall 295 effects of exercise on fatigue in large sample of people with fibromyalgia.

296 Effectiveness of exercise for improving sleep quality in fibromyalgia

297	Previous meta-analyses were unable to determine the effectiveness of exercise on sleep
298	quality in fibromyalgia due to the paucity of research. Indeed, most of them failed to
299	find RCTs on this topic. Given the extent of sleep dysfunction in those with
300	fibromyalgia, it is important to determine the effectiveness of exercise for improving
301	sleep quality in this population. The most comprehensive review to date included only
302	two studies examining sleep and reported moderate effects of exercise for enhancing
303	sleep quality (n= 104) [51]. The number of included studies in the present work was
304	considerably higher (13 RCTs, n=806) leading us to better estimate the effectiveness of
305	exercise for improving sleep quality in fibromyalgia. The effectiveness of exercise (of
306	any type) in enhancing sleep quality in fibromyalgia was limited (small effect),
307	however, meditative exercise programs (i.e., Tai Chi, Yoga and Quigong) may offer a
308	promising approach. Although there are potential mechanisms which can provide a
309	rationale to support the effectiveness of meditative exercise on improving sleep quality
310	(see, next section), our finding is based on an imprecise estimation (SMD (95% CI) = -
311	0.80 (-1.57 to -0.02)), from a relatively small sample size (141 participants in meditative
312	exercise vs. 177 participants in other types of exercise). Thus, further high quality
313	experimental research is required to confirm or refute our findings.
314	

315 Exercise mechanisms for fatigue and sleep quality in fibromyalgia

316

317

Aberrations in the central nervous system are well-known in fibromyalgia [52–54]. For
example, in comparison to non-fibromyalgia controls, abnormal levels of metabolites

320	(e.g., reductions in the ratio of N-acetylaspartate to creatine) have been observed in the
321	hippocampus of people with fibromyalgia [52] as well as structural abnormalities (e.g.,
322	lower volume) [53] and functional changes (e.g., increased activation) [54]. Another
323	system that might be altered in fibromyalgia is the hypothalamic-pituitary-adrenal axis
324	(HPA) as well as a sympathetic hyperactivity mediated by a dysfunction in the
325	autonomic nervous system (ANS) [55]. These alterations may in turn be related to
326	increased levels of fatigue [52]. Interestingly, exercise may revert these aberrations by
327	regulating the levels of metabolites as well as promoting angiogenesis, neurogenesis
328	and connectivity of the hippocampus [56,57].

329

In the present meta-analyses demonstrated that exercise had a small beneficial effect on 330 331 sleep quality in fibromyalgia. In this disease, hyperactivity of the sympathetic nervous 332 system is well-documented and, thus, stress levels are considerably high [58,59]. 333 Physiological responses to exercise often include a decrease in this sympathetic tone 334 and a shift toward parasympathetic activity, which in turn may be related to muscular 335 and nervous relaxation, leading to reductions in stress levels and, finally, to 336 improvement in sleep quality [60-62]. In this respect, our review showed that 337 meditative exercise programs were more effective in improving sleep quality than other 338 types of exercise. Although meditative exercise is safe in fibromyalgia, little is known 339 about their mechanisms of action. It is likely that this type of exercise is able to enhance 340 the parasympathetic activity and reduce sympathetic tone by decreasing activation of 341 HPA axis. Moreover, meditative exercise may facilitate enhanced rapid eye movement 342 (REM) sleep by increasing central nervous system inhibitory c-aminobutyric acid 343 (GABA) and serotonin levels [63].

345 Clinical applications

346

347

348 The recent European League Against Rheumatism (EULAR) recommendations for the 349 management of fibromyalgia, highlight exercise as the only therapy with a strong level 350 of evidence [4]. These recommendations were based on the findings provided by 351 systematic review of previous reviews. As we have discussed, while previous 352 systematic reviews showed reliable findings for pain management, they have provided 353 limited evidence on the effectiveness of exercise for reducing fatigue and increasing 354 sleep quality in fibromyalgia [6,8]. The present meta-analyses suggest that the 355 effectiveness of exercise may differ for different outcomes. This means that it cannot be 356 assumed that the benefits of exercise on pain automatically extend to other symptoms of 357 the condition. An interesting finding for healthcare providers has emerged from our 358 review in that fatigue reductions were higher when the main outcome of the study was 359 fatigue. Therefore, instead of designing a 'fix-all' exercise protocol for fibromyalgia, 360 exercise programmes should be designed as outcome-specific, by considering how 361 fibromyalgia manifests in the person who is going to engage in the programme. For 362 example, meditative exercise programs (e.g., Tai Chi or Qigong) may be more advisable 363 for people with fibromyalgia who experience difficulty sleeping. 364 The studies included in the present systematic review investigated a wide range of

365 exercise programs, including different types of exercise, intensities, frequencies, and

366 program duration. Although we explored several post-hoc analyses, we were unable to

367 determine the most effective exercise intervention for reducing fatigue. From our 368 approach to subgrouping the effects of different exercise interventions, in comparison to 369 usual care, we observed that the ideal intervention for lowering fatigue in fibromyalgia 370 seems to be specifically designed for such outcome, lasts less than 24 weeks and does 371 not involve aerobic exercise. Collectively, the high heterogeneity that emerged from the 372 effects of exercise on fatigue limits the establishment of evidence-based guidelines. 373 Although the American College of Sports Medicine (ACSM) has launched specific 374 recommendations to consider when conducting exercise interventions in fibromyalgia 375 [64], a recent review has reported poor therapeutic validity of studies that accomplish 376 these ACSM exercise recommendations [65].

377

378 Standard exercise interventions for the 'average' or 'most common profile' of people with fibromyalgia seems misjudged as people with fibromyalgia are heterogeneous [66]. 379 380 Thus, personalised exercise programs are warranted. In this context, some people with 381 fibromyalgia may experience fears related to engaging in exercise [67] or a discordance 382 of being more capable to engage in exercise than is self-perceived [68]. People with 383 these characteristics may be more likely to experience exercise as stressful. Therefore, 384 exercise interventions should not only be tailored to how fibromyalgia manifests in each 385 person but also to (more) general characteristics of the person.

386

387 Implications for research agenda

Findings of the present study provide evidence indicating that exercise is effective for
reducing fatigue in fibromyalgia. However, future research is needed to determine what
type of exercise is most beneficial for people with fibromyalgia, which intensity is best,
the optimal length of the training, as well as the most beneficial delivery method.

394

395	Our findings indicate that exercise seems to promote only small benefits on sleep
396	quality in fibromyalgia, and while relaxation is a potential mechanism by which
397	exercise might improve sleep quality, not all types of exercise promote relaxation. Thus,
398	meditative exercise programs that do suppose a lower physical load than other types of
399	exercises could be more effective for enhancing sleep quality in fibromyalgia.
400	Therefore, future large experimental studies of high quality, testing the effectiveness of
401	very gentle exercise specifically designed for enhancing sleep quality in fibromyalgia
402	are warranted. Additionally, further research testing the effectiveness of exercise in
403	objectively measured fatigue or sleep quality is warranted.
404	

405 Limitations and strengths of the present study

406

- 408 The most common limitations among the included studies were: (i) the long-term
- 409 effects of the interventions were not reported, (ii) results were not stratified by sex and

	Journal Pre-proof
410	most of the participants were women. Moreover, we did not include conference
411	proceedings and other types of grey literature due to the often low quality of reporting
412	in conference abstracts.
413	
414	Conclusions
415	
416	
417	We provided low-to-moderate quality evidence that exercise is moderately effective for
418	lowering fatigue and that there is moderate evidence of small effects of exercise for
419	enhancing sleep quality in fibromyalgia. Although speculative, meditative exercise
420	programs may be a promising approach for improving sleep quality in fibromyalgia. As
421	most of the interventions involved aerobic exercise, research using other types of
422	exercise is warranted. Instead of designing 'fix-all' and 'one size fits all' protocols,
423	exercise programmes, in order to be as effective as possible, should be specifically
424	designed for the outcome that is targeted and tailored to the characteristics of the person
425	who is going to engage in the exercise.
426	
427	Funding statement. This work was supported by the Health and Social Care Public
428	Health Agency, Northern Ireland [STL/5268/16 to CH and JGMcV]. FE-L has received

funding from the European Union's Horizon 2020 research and innovation programme

under the Marie Skłodowska-Curie grant agreement no. 707404. The funders of the

present study did not have any role in the study design, data collection and analyses,

429

430

431

- 432 decision to publish, or preparation of the manuscript. FEL is the guarantor of the
- 433 review.
- 434
- 435 **Conflicts of interest statement:** The authors declare no conflicts of interest to report.

Journal Pressor

Tables (Legends) 436

- 437 Table 1. Level of quality of the evidence for the effectiveness of exercise for reducing
- fatigue and enhancing sleep quality in fibromyalgia. 438

439

440 CI, Confidence interval; SMD, Standardised mean difference

Juna

441 **Figures** (Legends)

442 Figure 1. Flow chart showing the results of the selection process.

443

- 444 * Four studies included a usual care (control) group and two different exercise
- 445 interventions. Thus, they were included in the analyses related to the primary and
- 446 second aims of the present review.

red tr Junal

- 447 Figure 2. Pooled effects of randomised controlled trials analysing the effectiveness of
- 448 exercise in reducing fatigue in people with fibromyalgia.
- 449
- 450 Analyses were conducted using a random effects model. CI, Confidence Interval; df,
- 451 degrees of freedom; Std, Standardised; SD, Standard Deviation; IV, Inverse Variance;
- 452 A, Aerobic exercise; Co-,
- 453 Co-intervention (Edu, education; Photo, phototherapy); F, Flexibility exercise; L- and
- 454 W-B, land- and water-based exercise, respectively; M, Meditative exercise; R,
- 455 Resistance exercise; TC, Tai Chi; Y, Yoga.

Johnalbrerk

Figure 3. Post hoc analysis showing the pooled effects of randomised trials analysing
the effectiveness of studies in which fatigue was the primary outcome vs. the remaining
studies for lowering fatigue in people with fibromyalgia

460

- 461 Analyses were conducted using a random effects model. CI, Confidence Interval; df,
- 462 degrees of freedom; Std, Standardised; SD, Standard Deviation; IV, Inverse Variance;
- 463 A, Aerobic exercise; Co-, Co-intervention (Edu, education; Photo, phototherapy); F,
- 464 Flexibility exercise; L- and W-B, land- and water-based exercise, respectively; M,

ournal

465 Meditative exercise; R, Resistance exercise; TC, Tai Chi; Y, Yoga.

467 Figure 4. Pooled effects of randomised controlled trials analysing the effectiveness of468 exercise in enhancing sleep quality in people with fibromyalgia.

469

- 470
- 471 Analyses were conducted using a random effects model. CI, Confidence Interval; df,
- 472 degrees of freedom; Std, Standardised; SD, Standard Deviation; IV, Inverse Variance;
- 473 A, Aerobic exercise; Co-, Co-intervention (CBT, Cognitive Behaviour Therapy; Edu,
- 474 education; Photo, phototherapy); F, Flexibility exercise; L- and W-B, land- and water-
- 475 based exercise, respectively; M, Meditative exercise; R, Resistance exercise; TC, Tai

oundir

476 Chi; QG, Qigong; Y, Yoga.

		T		
	irnal	Dre	h nr	00
JUU	irnal		/= U.I.	UU.

- 478 Figure 5. Post hoc analysis showing the pooled effects of randomised trials analysing
- 479 the effectiveness of meditative exercise vs. the remaining types of exercise for
- 480 enhancing sleep quality in people with fibromyalgia.
- 481
- 482 Analyses were conducted using a random effects model. CI, Confidence Interval; df,
- 483 degrees of freedom; Std, Standardised; SD, Standard Deviation; IV, Inverse Variance;
- 484 A, Aerobic exercise; AC, Ai Chi; AqBD, Aquatic Biodanza; BA, Body Awareness; F,
- 485 flexibility exercise; TC, Tai Chi.

REFERENCES

489	[1]	Overman CL, Kool MB, Da Silva J a. P, Geenen R. The prevalence of severe
490		fatigue in rheumatic diseases: an international study. Clin Rheumatol
491		2016;35:409–15. doi:10.1007/s10067-015-3035-6.
492	[2]	Bigatti SM, Hernandez AM, Cronan TA, Rand KL. Sleep disturbances in
493		fibromyalgia syndrome: relationship to pain and depression. Arthritis Rheum
494		2008;59:961–7. doi:10.1002/art.23828.
495	[3]	Wolfe F, Clauw DJ, Fitzcharles M-A, Goldenberg DL, Katz RS, Mease P, et al.
496		The American College of Rheumatology preliminary diagnostic criteria for
497		fibromyalgia and measurement of symptom severity. Arthritis Care Res
498		(Hoboken) 2010;62:600–10. doi:10.1002/acr.20140.
499	[4]	Macfarlane GJ, Kronisch C, Dean LE, Atzeni F, Häuser W, Fluß E, et al.
500		EULAR revised recommendations for the management of fibromyalgia. Ann
501		Rheum Dis 2017;76:318–28. doi:10.1136/annrheumdis-2016-209724.
502	[5]	Busch AJ, Schachter CL, Overend TJ, Peloso PM, Barber KAR. Exercise for
503		fibromyalgia: a systematic review. J Rheumatol 2008;35:1130–44.
504	[6]	Bidonde J, Busch AJ, Schachter CL, Overend TJ, Kim SY, Góes SM, et al.
505		Aerobic exercise training for adults with fibromyalgia. Cochrane Database Syst
506		Rev 2017;2017. doi:10.1002/14651858.CD012700.
507	[7]	Bidonde J, Busch AJ, van der Spuy I, Tupper S, Kim SY, Boden C. Whole body

		Journal Pre-proof
508		vibration exercise training for fibromyalgia. Cochrane Database Syst Rev
509		2017;9:CD011755. doi:10.1002/14651858.CD011755.pub2.
510	[8]	Busch AJ, Webber SC, Richards RS, Bidonde J, Schachter CL, Schafer LA, et al.
511		Resistance exercise training for fibromyalgia. Cochrane Database Syst Rev
512		2013;12:CD010884. doi:10.1002/14651858.CD010884.
513	[9]	Busch A, Schachter CL, Peloso PM, Bombardier C. Exercise for treating
514		fibromyalgia syndrome. Cochrane Database Syst Rev 2002:CD003786.
515		doi:10.1002/14651858.CD003786.
516	[10]	Kim SY, Busch AJ, Overend TJ, Schachter CL, van der Spuy I, Boden C, et al.
517		Flexibility exercise training for adults with fibromyalgia. Cochrane Database
518		Syst Rev 2019;9:CD013419. doi:10.1002/14651858.CD013419.
519	[11]	Bidonde J, Busch AJ, Schachter CL, Webber SC, Musselman KE, Overend TJ, et
520		al. Mixed exercise training for adults with fibromyalgia. Cochrane Database Syst
521		Rev 2019. doi:10.1002/14651858.CD013340.
522	[12]	Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred
523		reporting items for systematic reviews and meta-analyses: the PRISMA
524		statement. BMJ 2009;339:b2535. doi:10.1016/j.jcms.2010.11.001.
525	[13]	Alentorn-Geli E, Padilla J, Moras G, Lazaro Haro C, Fernandez-Sola J. Six
526		Weeks of Whole-Body Vibration Exercise Improves Pain and Fatigue in Women
527		with Fibromyalgia. J Altern Complement Med 2008;14:975-81.
528		doi:10.1089/acm.2008.0050.
529	[14]	Carson JW, Carson KM, Jones KD, Bennett RM, Wright CL, Mist SD. A pilot
530		randomized controlled trial of the Yoga of Awareness program in the
531		management of fibromyalgia. Pain 2010;151:530-9.

		Journal Pre-proof
532		doi:10.1016/j.pain.2010.08.020.
533	[15]	Tomas-Carus P, Gusi N, Hakkinen A, Hakkinen K, Leal A, Ortega-Alonso A.
534		Eight months of physical training in warm water improves physical and mental
535		health in women with fibromyalgia: A randomized controlled trial. J Rehabil
536		Med 2008;40:248–52. doi:10.2340/16501977-0168.
537	[16]	Tomas-Carus P, Hakkinen A, Gusi N, Leal A, Hakkinen K, Ortega-Alonso A.
538		Aquatic training and detraining on fitness and quality of life in fibromyalgia.
539		Med Sci Sports Exerc 2007;39:1044-50. doi:10.1249/mss.0b0138059aec4.
540	[17]	Valkeinen H, Alen M, Hakkinen A, Hannonen P, Kukkonen-Harjula K,
541		Hakkinen K. Effects of concurrent strength and endurance training on physical
542		fitness and symptoms in postmenopausal women with fibromyalgia: A
543		randomized controlled trial 2008;89:1660-6. doi:10.1016/j.apmr.2008.01.022.
544	[18]	van Santen M, Bolwijn P, Verstappen F, Bakker C, Hidding A, Houben H, et al.
545		A randomized clinical trial comparing fitness and biofeedback training versus
546		basic treatment in patients with fibromyalgia. J Rheumatol 2002;29:575-81.
547	[19]	Wigers SH, Stiles TC, Vogel PA. Effects of aerobic exercise versus stress
548		management treatment in fibromyalgia. A 4.5 year prospective study. Scand J
549		Rheumatol 1996;25:77-86. doi:10.3109/03009749609069212.
550	[20]	Wong A, Figueroa A, Sanchez-Gonzalez MA, Son W-M, Chernykh O, Park S-Y.
551		Effectiveness of Tai Chi on Cardiac Autonomic Function and Symptomatology
552		in Women With Fibromyalgia: A Randomized Controlled Trial. J Aging Phys
553		Act 2018;26:214–21. doi:10.1123/japa.2017-0038.
554	[21]	Bircan C, Karasel SA, Akgun B, El O, Alper S. Effects of muscle strengthening
555		versus aerobic exercise program in fibromyalgia. Rheumatol Int 2008;28:527–32.

		Journal Pre-proof
556		doi:10.1007/s00296-007-0484-5.
557	[22]	Calandre EP, Rodriguez-Claro ML, Rico-Villademoros F, Vilchez JS, Hidalgo J,
558		Delgado-Rodriguez A. Effects of pool-based exercise in fibromyalgia
559		symptomatology and sleep quality: a prospective randomised comparison
560		between stretching and Ai Chi. Clin Exp Rheumatol 2009;27:S21-8.
561	[23]	Demir-Gocmen D, Altan L, Korkmaz N, Arabaci R. Effect of supervised exercise
562		program including balance exercises on the balance status and clinical signs in
563		patients with fibromyalgia. Rheumatol Int 2013;33:743-50. doi:10.1007/s00296-
564		012-2444-у.
565	[24]	Fernandes G, Jennings F, Nery Cabral MV, Pirozzi Buosi AL, Natour J.
566		Swimming Improves Pain and Functional Capacity of Patients With
567		Fibromyalgia: A Randomized Controlled Trial. Arch Phys Med Rehabil
568		2016;97:1269–75. doi:10.1016/j.apmr.2016.01.026.
569	[25]	Collado-Mateo D, Dominguez-Munoz FJ, Adsuar JC, Garcia-Gordillo MA, Gusi
570		N. Effects of Exergames on Quality of Life, Pain, and Disease Effect in Women
571		With Fibromyalgia: A Randomized Controlled Trial. Arch Phys Med Rehabil
572		2017;98:1725–31. doi:10.1016/j.apmr.2017.02.011.
573	[26]	Gavi MBRO, Vassalo DV, Amaral FT, Macedo DCF, Gava PL, Dantas EM, et
574		al. Strengthening exercises improve symptoms and quality of life but do not
575		change autonomic modulation in fibromyalgia: a randomized clinical trial. PLoS
576		One 2014;9:e90767. doi:10.1371/journal.pone.0090767.
577	[27]	Jentoft ES, Kvalvik AG, Mengshoel M. Effects of pool-based and land-based
578		aerobic exercise on women with fibromyalgia/chronic widespread muscle pain.
579		ARTHRITIS Rheum CARE Res 2001;45:42–7.

580	[28]	Journal Pre-proof Jones KD, Burckhardt CS, Clark SR, Bennett RM, Potempa KM. A Randomized
581		controlled trial of muscle strengthening versus flexibility training in
582		fibromyalgia. J Rheumatol 2002;29:1041–8.
583	[29]	Kendall SA, Brolin-Magnusson K, Soren B, Gerdle B, Henriksson KG. A pilot
584		study of body awareness programs in the treatment of fibromyalgia syndrome.
585		Arthritis Care Res (Hoboken) 2000;13:304–11.
586	[30]	López-Pousa S, Bassets Pagès G, Monserrat-Vila S, de Gracia Blanco M,
587		Hidalgo Colomé J, Garre-Olmo J. Sense of Well-Being in Patients with
588		Fibromyalgia: Aerobic Exercise Program in a Mature Forest-A Pilot Study. Evid
589		Based Complement Alternat Med 2015;2015:614783. doi:10.1155/2015/614783.
590	[31]	Lopez-Rodriguez MM, Fernandez-Martinez M, Mataran-Penarrocha GA,
591		Rodriguez-Ferrer ME, Granados Gamez G, Aguilar Ferrandiz E. [Effectiveness
592		of aquatic biodance on sleep quality, anxiety and other symptoms in patients with
593		fibromyalgia]. Med Clin (Barc) 2013;141:471–8.
594		doi:10.1016/j.medcli.2012.09.036.
595	[32]	Mannerkorpi K, Nordeman L, Cider Å, Jonsson G. Does moderate-to-high
596		intensity Nordic walking improve functional capacity and pain in fibromyalgia?
597		A prospective randomized controlled trial. Arthritis Res Ther 2010;12:R189.
598		doi:10.1186/ar3159.
599	[33]	Norregaard J, Lykkegaard JJ, Mehlsen J, DanneskioldSamsoe B. Exercise
600		training in treatment of fibromyalgia. J Musculoskelet Pain 1997;5:71–9.
601		doi:10.1300/J094v05n01_05.
602	[34]	van Santen M, Bolwijn P, Landewe R, Verstappen F, Bakker C, Hidding A, et al.
603		High or low intensity aerobic fitness training in fibromyalgia: Does it matter? J

		Journal Pre-proof
604		Rheumatol 2002;29:582–7.
605	[35]	Vitorino DFD, Carvalho LBC, do Prado GF. Hydrotherapy and conventional
606		physiotherapy improve total sleep time and quality of life of fibromyalgia
607		patients: Randomized clinical trial. SLEEP Med 2006;7:293-6.
608		doi:10.1016/j.sleep.2005.09.002.
609	[36]	Etnier JL, Karper WB, Gapin JI, Barella LA, Chang YK, Murphy KJ. Exercise,
610		Fibromyalgia, and Fibrofog: A Pilot Study. J Phys Act Health 2009;6:239–46.
611		doi:10.1123/jpah.6.2.239.
612	[37]	Wang C, Schmid CH, Rones R, Kalish R, Yinh J, Goldenberg DL, et al. A
613		Randomized Trial of Tai Chi for Fibromyalgia. N Engl J Med 2010;363:743–54.
614		doi:10.1056/NEJMoa0912611.
615	[38]	Wang C, Schmid CH, Fielding RA, Harvey WF, Reid KF, Price LL, et al. Effect
616		of tai chi versus aerobic exercise for fibromyalgia: comparative effectiveness
617		randomized controlled trial. BMJ 2018;360:k851. doi:10.1136/bmj.k851.
618	[39]	Genc A, Tur BS, Aytur YK, Oztuna D, Erdogan MF. Does aerobic exercise
619		affect the hypothalamic-pituitary-adrenal hormonal response in patients with
620		fibromyalgia syndrome? J Phys Ther Sci 2015;27:2225–31.
621		doi:10.1589/jpts.27.2225.
622	[40]	Assumpcao A, Matsutani LA, Yuan SL, Santo AS, Sauer J, Mango P, et al.
623		Muscle stretching exercises and resistance training in fibromyalgia: which is
624		better? A three-arm randomized controlled trial. Eur J Phys Rehabil Med
625		2018;54:663–70. doi:10.23736/S1973-9087.17.04876-6.
626	[41]	McBeth J, Prescott G, Scotland G, Lovell K, Keeley P, Hannaford P, et al.
627		Cognitive behavior therapy, exercise, or both for treating chronic widespread

		Journal Pre-proof
628		pain. Arch Intern Med 2012;172:48-57. doi:10.1001/archinternmed.2011.555.
629	[42]	Schachter CL, Busch AJ, Peloso PM, Sheppard MS. Effects of short versus long
630		bouts of aerobic exercise in sedentary women with. Fibromyalgia: A randomized
631		controlled trial. Phys Ther 2003;83:340–58.
632	[43]	da Silva MM, Albertini R, de Tarso Camillo de Carvalho P, Leal-Junior ECP,
633		Bussadori SK, Vieira SS, et al. Randomized, blinded, controlled trial on
634		effectiveness of photobiomodulation therapy and exercise training in the
635		fibromyalgia treatment. Lasers Med Sci 2018;33:343-51. doi:10.1007/s10103-
636		017-2388-2.
637	[44]	Giannotti E, Koutsikos K, Pigatto M, Rampudda ME, Doria A, Masiero S.
638		Medium-/long-term effects of a specific exercise protocol combined with patient
639		education on spine mobility, chronic fatigue, pain, aerobic fitness and level of
640		disability in fibromyalgia. Biomed Res Int 2014;2014:474029.
641		doi:10.1155/2014/474029.
642	[45]	Haak T, Scott B. The effect of Qigong on Fibromyalgia (FMS): A controlled
643		randomized study. Disabil Rehabil 2008;30:625–33.
644		doi:10.1080/09638280701400540.
645	[46]	Hakkinen A, Hakkinen K, Hannonen P, Alen M. Strength training induced
646		adaptations in neuromuscular function of premenopausal women with
647		fibromyalgia: comparison with healthy women. Ann Rheum Dis 2001;60:21-6.
648		doi:10.1136/ard.60.1.21.
649	[47]	Lynch M, Sawynok J, Hiew C, Marcon D. A randomized controlled trial of
650		qigong for fibromyalgia. Arthritis Res Ther 2012;14:R178. doi:10.1186/ar3931.
651	[48]	Mannerkorpi K, Nyberg B, Ahlmen M, Ekdahl C. Pool exercise combined with
		Journal Pre-proof
-----	------	---
652		an education program for patients with fibromyalgia syndrome. A prospective,
653		randomized study. J Rheumatol 2000;27:2473-81.
654	[49]	Sanudo B, Carrasco L, de Hoyo M, Figueroa A, Saxton JM. Vagal modulation
655		and symptomatology following a 6-month aerobic exercise program for women
656		with fibromyalgia. Clin Exp Rheumatol 2015;33:S41-5.
657	[50]	Palstam A, Mannerkorpi K. Work ability in fibromyalgia: an update in the 21st
658		century. Curr Rheumatol Rev 2017. doi:10.2174/1573397113666170502152955.
659	[51]	Bidonde J, AJ B, SC W, CL S, Danyliw A, TJ O, et al. Aquatic exercise training
660		for fibromyalgia. Cochrane Database Syst Rev 2014;10:CD011336.
661		doi:10.1002/14651858.CD011336.
662	[52]	Wood PB, Ledbetter CR, Glabus MF, Broadwell LK, Patterson JC. Hippocampal
663		metabolite abnormalities in fibromyalgia: correlation with clinical features. J
664		Pain 2009;10:47-52. doi:10.1016/j.jpain.2008.07.003.
665	[53]	McCrae C, O'Shea A, Boissoneault J, Vatthauer K, Robinson M, Staud R, et al.
666		Fibromyalgia patients have reduced hippocampal volume compared with healthy
667		controls. J Pain Res 2015;8:47. doi:10.2147/JPR.S71959.
668	[54]	González-Roldán AM, Bomba IC, Diesch E, Montoya P, Flor H, Kamping S.
669		Controllability and hippocampal activation during pain expectation in
670		fibromyalgia syndrome. Biol Psychol 2016;121:39–48.
671		doi:10.1016/j.biopsycho.2016.09.007.
672	[55]	Martinez-Lavin M. Biology and therapy of fibromyalgia. Stress, the stress
673		response system, and fibromyalgia. Arthritis Res Ther 2007;9:216.
674		doi:10.1186/ar2146.
675	[56]	Valim V, Natour J, Xiao Y, Pereira AFA, Lopes BB da C, Pollak DF, et al.

		Journal Pre-proof
676		Effects of physical exercise on serum levels of serotonin and its metabolite in
677		fibromyalgia: a randomized pilot study. Rev Bras Reumatol n.d.;53:538-41.
678		doi:10.1016/j.rbr.2013.02.001.
679	[57]	Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise
680		effects on brain and cognition. Nat Rev Neurosci 2008;9:58-65.
681		doi:10.1038/nrn2298.
682	[58]	Petzke F, Clauw DJ. Sympathetic nervous system function in fibromyalgia. Curr
683		Rheumatol Rep 2000;2:116–23.
684	[59]	SARZI-PUTTINI P, Atzeni F, Diana A, Doria A, Furlan R. Increased Neural
685		Sympathetic Activation in Fibromyalgia Syndrome. Ann N Y Acad Sci
686		2006;1069:109–17. doi:10.1196/annals.1351.009.
687	[60]	O'Connor PJ, Youngstedt SD. Influence of exercise on human sleep. Exerc Sport
688		Sci Rev 1995;23:105–34.
689	[61]	Kubitz KA, Landers DM, Petruzzello SJ, Han M. The effects of acute and
690		chronic exercise on sleep. A meta-analytic review. Sports Med 1996;21:277-91.
691		doi:10.2165/00007256-199621040-00004.
692	[62]	Stults-Kolehmainen MA, Sinha R. The Effects of Stress on Physical Activity and
693		Exercise. Sport Med 2014;44:81–121. doi:10.1007/s40279-013-0090-5.
694	[63]	Karimi M, Yazdani Noori A. Serotonin and Mood State Changes in Response to
695		a Period of Yoga Training in Well-Trained Wrestlers. Int J Wrestl Sci 2015;5:89-
696		92. doi:10.1080/21615667.2015.1116647.
697	[64]	Pescatello LS, American College of Sports Medicine. ACSM's guidelines for
698		exercise testing and prescription. 9th ed. Philadelphia: Wolters
699		Kluwer/Lippincott Williams & Wilkins Health; 2014.

		Journal Pre-proof
700	[65]	Álvarez-Gallardo IC, Bidonde J, Busch A, Westby M, Kenny GP, Delgado-
701		Fernández M, et al. Therapeutic validity of exercise interventions in the
702		management of fibromyalgia. J Sports Med Phys Fitness 2018.
703		doi:10.23736/S0022-4707.18.08897-7.
704	[66]	Estévez-López F, Segura-Jiménez V, Álvarez-Gallardo IC, Borges-Cosic M,
705		Pulido-Martos M, Carbonell-Baeza A, et al. Adaptation profiles comprising
706		objective and subjective measures in fibromyalgia: the al-Ándalus project.
707		Rheumatology 2017;56:2015–24. doi:10.1093/rheumatology/kex302.
708	[67]	Russell D, Álvarez Gallardo IC, Wilson I, Hughes CM, Davison GW, Sañudo B,
709		et al. "Exercise to me is a scary word": perceptions of fatigue, sleep dysfunction,
710		and exercise in people with fibromyalgia syndrome-a focus group study.
711		Rheumatol Int 2018;38:507-15. doi:10.1007/s00296-018-3932-5.
712	[68]	Estévez-López F, Álvarez-Gallardo IC, Segura-Jiménez V, Soriano-Maldonado
713		A, Borges-Cosic M, Pulido-Martos M, et al. The discordance between
714		subjectively and objectively measured physical function in women with
715		fibromyalgia: association with catastrophizing and self-efficacy cognitions. The
716		al-Ándalus project. Disabil Rehabil 2018;40:329–37.
717		doi:10.1080/09638288.2016.1258737.

718	Electronic Supplementary Material: Effectiveness of exercise in fatigue and sleep
719	quality in fibromyalgia: a systematic review and meta-analysis of randomised trials by
720	Estévez-López et al.
721	
722	List of Electronic Supplementary Material tables
723	
724	
725	Electronic Supplementary Material Table S1. Summary of the randomised controlled
726	trials testing the effectiveness of exercise interventions in comparison to usual care.
727	
728	
729	ACR, American College Rheumatology; CPG, Chronic Pain Grade Questionnaire;
730	GHQ, General Health Questionnaire; FIQ, Fibromyalgia Impact Questionnaire; FIQR,
731	Fibromyalgia Impact Questionnaire Revised; FM; Fibromyalgia; FSS, Fatigue Severity
732	Scale; HAQ, Stanford Health Assessment Questionnaire; HRmax, Maximum Heart
733	Rate; PSQI, Pittsburgh Sleep Quality Index; min, minutes; RM, Repetition Maximum;
734	USA, United States of America; VNS, daily self-recordings of a 15-item Visual
735	Numerological Scale; VAS, Visual Analogue Scale.
736	* Primary outcome of the study.
737	

rnal Pre-proof

Journal Pre-proof

738 Electronic Supplementary Material Table S2. Summary of the randomised trials

739 comparing the effectiveness of different exercise interventions.

740

- 741 ACR, American College Rheumatology; CPG, Chronic Pain Grade Questionnaire;
- 742 GHQ, General Health Questionnaire; FIQ, Fibromyalgia Impact Questionnaire; FIQR,
- 743 Fibromyalgia Impact Questionnaire Revised; FM; Fibromyalgia; FSS, Fatigue Severity
- 744 Scale; HAQ, Stanford Health Assessment Questionnaire; MFI-20, Multidimensional
- 745 Fatigue Inventory ; HRmax, Maximum Heart Rate; PSQI, Pittsburgh Sleep Quality
- 746 Index; min, minutes; RM, Maximum Repetition; VNS, daily self-recordings of a 15-
- 747 item Visual Numerological Scale; VAS, Visual Analogue Scale *Primary outcome

Journe

748

	Journal Pre-proof
749	List of Electronic Supplementary Material figures
750	
751	
752	Electronic Supplementary Material Figure S1. Summary of risk of bias of the
753	randomised controlled trials testing the effectiveness of exercise interventions in
754	comparison to usual care.
755	
756	Electronic Supplementary Material Figure S2. Summary of risk of bias of the
757	randomised trials comparing the effectiveness of different exercise interventions.
758	
759	Electronic Supplementary Material Figure S3. Risk of bias of each randomised
760	controlled trial testing the effectiveness of exercise interventions in comparison to usual
761	care.
762	
763	Electronic Supplementary Material Figure S4. Risk of bias of each randomised trial
764	comparing the effectiveness of different exercise interventions.
765	
766	Electronic Supplementary Material Figure S5. Pooled effects of the randomised
767	controlled trials analysing the effectiveness of exercise in reducing fatigue in people

768 with fibromyalgia: sensitivity analyses excluding studies with high risk of bias.

	Journal Pre-proof
769	Electronic Supplementary Material Figure S6. Pooled effects of the randomised
770	controlled trials analysing the effectiveness of exercise in reducing fatigue in people
771	with fibromyalgia: sensitivity analyses using fixed effects model.
772	
773	Electronic Supplementary Material Figure S7. Funnel plot of the randomised controlled
774	trials analysing the effectiveness of exercise in reducing fatigue in people with
775	fibromyalgia.
776	
777	Electronic Supplementary Material Figure S8. Post hoc analyses of the randomised
778	controlled trials testing the effectiveness of exercise interventions in fatigue in
779	comparison to usual care: subgroups according to levels of adherence (80% adherence
780	at minimum vs. lower rates or none adherence criterion).
781	
782	Electronic Supplementary Material Figure S9. Post hoc analyses of the randomised
783	controlled trials testing the effectiveness of exercise interventions in fatigue in
784	comparison to usual care: gender of the participants (only women vs both genders).
785	
786	Electronic Supplementary Material Figure S10. Post hoc analyses of the randomised
787	controlled trials testing the effectiveness of exercise interventions in fatigue in
788	comparison to usual care: subgroups according to type of interventions (only exercise vs
789	exercise + co-intervention).

41

Figure S11. Post hoc analyses of the randomised controlled trials testing the effectiveness of exercise interventions in fatigue in comparison to usual care: subgroups according to type of exercise (meditative exercise vs other types).

794

795 Electronic Supplementary Material Figure S12. Post hoc analyses of the randomised

controlled trials testing the effectiveness of exercise interventions in fatigue in

comparison to usual care: subgroups according to sample size (20 participants per group

798 at minimum vs lower sample sizes).

799

Electronic Supplementary Material Figure S13. Post hoc analyses of the randomised
controlled trials testing the effectiveness of exercise interventions in fatigue in
comparison to usual care: subgroups according to settings (land-based vs water-based

803 exercise).

804

805 Electronic Supplementary Material Figure S14. Post hoc analyses of the randomised
806 controlled trials testing the effectiveness of exercise interventions in fatigue in
807 comparison to usual care: subgroups according to intensity (low-to-moderate vs
808 moderate-to-high).

809

Journal Pre-proo

810	Electronic Supplementary Material Figure S15. Post hoc analyses of the randomised
811	controlled trials testing the effectiveness of exercise interventions in fatigue in
812	comparison to usual care: subgroups according to aerobic exercise (aerobic exercise in
813	insolation or combined with other exercises vs other exercises that did not include
814	aerobic training).

815

- 816 Electronic Supplementary Material Figure S16. Post hoc analyses of the randomised
- 817 controlled trials testing the effectiveness of exercise interventions in fatigue in
- 818 comparison to usual care: subgroups according to length of the intervention (24 weeks
- 819 at minimum vs shorter interventions).

820

Electronic Supplementary Material Figure S17. Pooled effects of the randomised
controlled trials analysing the effectiveness of exercise in enhancing sleep quality in
people with fibromyalgia: sensitivity analyses excluding studies with high risk of bias.

824

- 825 Electronic Supplementary Material Figure S18. Pooled effects of the randomised
- 826 controlled trials analysing the effectiveness of exercise in enhancing sleep quality in
- 827 people with fibromyalgia: sensitivity analyses using fixed effects model.
- 828 Electronic Supplementary Material Figure S19. Funnel plot of the randomised
- 829 controlled trials analysing the effectiveness of exercise in enhancing sleep quality in

830 people with fibromyalgia.

Biggin Pre-proof Electronic Supplementary Material Figure S20. Pooled effects of the randomised trials comparing the effectiveness of meditative exercise and other types of exercise in fatigue in people with fibromyalgia.

- 835 Electronic Supplementary Material Figure S21. Pooled effects of the randomised trials
- 836 comparing the effectiveness of resistance and flexibility exercise in fatigue in people
- 837 with fibromyalgia.

838

- 839 Electronic Supplementary Material Figure S22. Pooled effects of the randomised trials
- 840 comparing the effectiveness of land-based and water-based exercise in fatigue in people

OUL

841 with fibromyalgia.

Table 1. Level of quality evidence for the effectiveness of exercise for reducing fatigue and enhancing sleep quality in fibromyalgia.

			Certainty ass	sessment	№ of par	ticipants	Eff	ect					
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Exercise	Usual care	SMD (95% CI)	Size	Certainty	Direction	
Outco	Outcome = Fatigue												
17	Randomised controlled trials	Not serious	Serious	Not serious	Unclear	Not serious	612/1003 (62%)	391/1003 (39%)	-0.47 (-0.67 to -0.27)	Moderate	$ \begin{array}{c} $	In favour of exercise	
Outco	Outcome = Sleep quality												
12	Randomised controlled trials	Not serious	Not serious	Not serious	Serious	Not serious	431/731 (59%)	300/731 (41%)	-0.17 (-0.32 to -0.01)	Small	⊕⊕⊕⊖ Moderate	In favour of exercise	

CI, Confidence interval; SMD, Standardised mean differences

100

	Exercise	Usual o	are (Con	trol)		Std. Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	
Wong et al., 2018 (M-TC; L-B)	-2.4	0.74	17	0.02	1.43	14	3.3%	-2.13 [-3.04, -1.23]	•
Alentorn-Geli et al., 2008 (A & F; L-B)	43	13.3	12	76	18.9	10	2.7%	-1.98 [-3.03, -0.92]	←
Etnier et al., 2009 (F & R; L-B)	59.6	17.1	8	87.6	17.1	8	2.3%	-1.55 [-2.71, -0.39]	•
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1.13	20	-0.1	1.46	10	4.0%	-0.86 [-1.65, -0.07]	← • • • • • • • • • • • • • • • • • • •
Wigers et al., 1996 (A; L-B)	-27	32.48	16	3	39.35	17	4.5%	-0.81 [-1.52, -0.10]	←
Valkeinen et al., 2008 (A & R; L-B)	-19.08	35.09	13	8.27	32.03	11	3.7%	-0.78 [-1.62, 0.06]	←
Hakkinen et al., 2001 (R; L-B)	-19	35.02	11	1	4.35	10	3.4%	-0.75 [-1.64, 0.14]	←
Carson et al., 2010 (M-Y; L-B)	-1.б	3.3	22	0.32	2.73	26	5.5%	-0.63 [-1.21, -0.05]	←
Tomas-Carus et al., 2007 (A; W-B)	-1.5	3.12	17	0.3	3.09	17	4.7%	-0.57 [-1.25, 0.12]	←
McBeth et al., 2012 (A; L-B)	-3.6	6.24	92	-0.9	7.88	44	7.7%	-0.39 [-0.76, -0.03]	
Collado-Mateo et al., 2016 (A & R; L-B)	-0.64	2.99	41	0.22	2.66	35	6.7%	-0.30 [-0.75, 0.15]	
Assumpção et al., 2018 (R; L-B)	-1.93	4.2	16	-0.27	7.5	7	3.4%	-0.30 [-1.19, 0.59]	←
Da Silva et al., 2017 (A & F; L-B)	-0.5	1.46	20	-0.1	1.46	10	4.2%	-0.27 [-1.03, 0.50]	←
Mannerkorpi et al., 2000 (A & F; W-B; Co-edu)	-0.9	2.35	20	-0.1	3.41	30	5.6%	-0.26 [-0.83, 0.31]	
Assumpção et al., 2018 (F; L-B)	-1.58	2.91	14	-0.27	7.5	7	3.3%	-0.26 [-1.17, 0.65]	←
McBeth et al., 2012 (A; L-B; Co-CBT)	-2.7	7.5	94	-0.9	7.88	44	7.7%	-0.23 [-0.59, 0.12]	
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)	-4.8	16.39	20	-1.42	10.43	12	4.5%	-0.23 [-0.95, 0.49]	
Van Santen et al., 2002 (A, B, F & R; L-B)	-5.1	16.14	37	-1.9	15.39	28	б.4%	-0.20 [-0.69, 0.29]	
Schachter et al., 2003 (A, longer bouts; L-B)	-0.5	2.41	51	-0.5	3.45	18	5.9%	0.00 [-0.54, 0.54]	
Schachter et al., 2003 (A, shorter bouts; L-B)	-0.3	2.79	56	-0.5	3.45	18	6.0%	0.07 [-0.46, 0.60]	-
Tomas Carus et al., 2008 (A; W-B)	-0.б	3.07	15	-1.2	2.98	15	4.5%	0.19 [-0.52, 0.91]	
Total (95% CI)			612			391	100.0%	-0.47 [-0.67, -0.27]	

Heterogeneity: Tau² = 0.10; Chi² = 41.16, df = 20 (P = 0.004); I² = 51% Test for overall effect: Z = 4.55 (P < 0.00001)

	Exercise	Exercise (Experimental) Usual care (Control) Std. Mean Differen					Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	
1.1.1 The primary outcome was fatigue									
Alentorn-Geli et al., 2008 (A & F; L-B)	43	13.3	12	76	18.9	10	2.7%	-1.98 [-3.03, -0.92]	←
Etnier et al., 2009 (F & R; L-B)	59.6	17.1	8	87.6	17.1	8	2.3%	-1.55 [-2.71, -0.39]	←
Subtotal (95% CI)			20			18	5.0%	-1.78 [-2.56, -1.00]	
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.29$, $df = 1$	(P = 0.59)	$ ^2 = 0\%$							
Test for overall effect: $Z = 4.47$ (P < 0.00001)									
1.1.2 The primary outcome was not fatigue									
Wong et al., 2018 (M-TC; L-B)	-2.4	0.74	17	0.02	1.43	14		-2.13 [-3.04, -1.23]	
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1.13	20	-0.1	1.46	10	4.0%	• • •	
Wigers et al., 1996 (A; L-B)	-27	32.48	16	3	39.35	17	4.5%	-0.81 [-1.52, -0.10]	
Valkeinen et al., 2008 (A & R; L-B)	-19.08	35.09	13	8.27	32.03	11	3.7%	-0.78 [-1.62, 0.06]	
Hakkinen et al., 2001 (R; L-B)	-19	35.02	11	1	4.35	10	3.4%	-0.75 [-1.64, 0.14]	
Carson et al., 2010 (M-Y; L-B)	-1.6	3.3	22	0.32	2.73	26	5.5%	-0.63 [-1.21, -0.05]	
Tomas-Carus et al., 2007 (A; W-B)	-1.5	3.12	17	0.3	3.09	17	4.7%	-0.57 [-1.25, 0.12]	-
McBeth et al., 2012 (A; L-B)	-3.6	6.24	92	-0.9	7.88	44	7.7%	-0.39 [-0.76, -0.03]	
Collado-Mateo et al., 2016 (A & R; L-B)	-0.64	2.99	41	0.22	2.66	35	6.7%	-0.30 [-0.75, 0.15]	
Assumpção et al., 2018 (R; L-B)	-1.93	4.2	16	-0.27	7.5	7	3.4%	-0.30 [-1.19, 0.59]	
Da Silva et al., 2017 (A & F; L-B)	-0.5	1.46	20	-0.1	1.46	10	4.2%	-0.27 [-1.03, 0.50]	
Mannerkorpi et al., 2000 (A & F; W-B; Co-edu)	-0.9	2.35	20	-0.1	3.41	30	5.6%	-0.26 [-0.83, 0.31]	
Assumpção et al., 2018 (F; L-B)	-1.58	2.91	14	-0.27	7.5	7	3.3%	-0.26 [-1.17, 0.65]	
McBeth et al., 2012 (A; L-B; Co-CBT)	-2.7	7.5	94	-0.9	7.88	44	7.7%	-0.23 [-0.59, 0.12]	
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)	-4.8	16.39	20	-1.42	10.43	12	4.5%	-0.23 [-0.95, 0.49]	
Van Santen et al., 2002 (A, B, F & R; L-B)	-5.1	16.14	37	-1.9	15.39	28	б.4%	-0.20 [-0.69, 0.29]	
Schachter et al., 2003 (A, longer bouts; L-B)	-0.5	2.41	51	-0.5	3.45	18	5.9%	0.00 [-0.54, 0.54]	
Schachter et al., 2003 (A, shorter bouts; L-B)	-0.3	2.79	56	-0.5	3.45	18	6.0%	0.07 [-0.46, 0.60]	
Tomas Carus et al., 2008 (A; W-B)	-0.б	3.07	15	-1.2	2.98	15	4.5%	0.19 [-0.52, 0.91]	
Subtotal (95% CI)			592			373	95.0%	-0.39 [-0.56, -0.21]	
Heterogeneity: $Tau^2 = 0.05$; $Chi^2 = 28.43$, df =	18 (P = 0.0	06); I ² = 31	7%						
Test for overall effect: $Z = 4.24$ (P < 0.0001)									
			610			201	100.00	0.471.067.0071	
Total (95% CI)			612			391	100.0%	-0.47 [-0.67, -0.27]	
Heterogeneity: $Tau^2 = 0.10$; $Chi^2 = 41.16$, $df = Tast for exercise efforts 7 = 4.55 (P < 0.00001)$	20 (P = 0.0)	004); l ² = !	51%						-2

Test for overall effect: Z = 4.55 (P < 0.00001)

Test for subgroup differences: $Chi^2 = 11.66$, df = 1 (P = 0.0006), $I^2 = 91.4\%$

	Exercise	e (Experime	ental)	Usual /	care (Con	itrol)	1	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1.13	20	-0.1	1.46	10	3.8%	-0.86 [-1.65, -0.07]	←
Lynch et al., 2012 (M-QG; L-B)	-3.04	3.75	44	-0.62	3.02	45	12.2%	-0.71 [-1.13, -0.28]	←
Da Silva et al., 2017 (A & F; L-B)	-0.б	1.46	20	0	2.46	10	4.1%	-0.32 [-1.08, 0.45]	• • • • • • • • • • • • • • • • • • • •
Carson et al., 2010 (M-Y; L-B)	-1.44	3.89	22	0.28	7.08	26	7.1%	-0.29 [-0.86, 0.28]	
Hakkinen et al., 2001 (R; L-B)	-10	28.66	11	-3	39.02	10	3.2%	-0.20 [-1.06, 0.66]	• • • •
McBeth et al., 2012 (A; L-B; Co-CBT)	-1.3	7.94	94	0.3	9.4	44	16.8%	-0.19 [-0.55, 0.17]	
Valkeinen et al., 2008 (A & R; L-B)	-4.23	22.25	13	-1.18	22.25	11	3.7%	-0.13 [-0.94, 0.67]	
Wong et al., 2018 (M-TC; L-B)	-0.2	2	17	-0.2		14	4.7%	0.00 [-0.71, 0.71]	
McBeth et al., 2012 (A; L-B)	0.4	6.07	92	0.3	7.75	44	16.7%	0.01 [-0.34, 0.37]	
Tomas-Carus et al., 2007 (A; W-B)	0.43	1.57	17	0.34	1.57	17	5.2%	0.06 [-0.62, 0.73]	
Haak et al., 2007 (M-QG; L-B)	0.43	1.18	29	0.34	1.54	28	8.5%	0.06 [-0.45, 0.58]	 _
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)	-0.5	4.07	20	-0.84	4.6	12	4.6%	0.08 [-0.64, 0.79]	
Sañudo et al., 2015 (A; L-B)	0.2	3.24	16	-0.3	4.21	12	4.2%	0.13 [-0.62, 0.88]	
Wigers et al., 1996 (A; L-B)	10	44.37	16	2	50	17	5.0%	0.16 [-0.52, 0.85]	
Total (95% CI)			431			300	100.0%	-0.17 [-0.32, -0.01]	
Heterogeneity. Tau ² = 0.00; Chi ² = 13.68, df = 13 (P = 0.40); $I^2 = 5\%$								-1 -0.5 0 0.5 1	
Test for overall effect: $Z = 2.09 (P = 0.04)$									Favours (Exercise) Favours (Usual care)

	Meditat	tive exe	rcise	Other ty	pes of exe	rcise		Std. Mean Difference	:	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		
Lopez-Rodriguez et al., 2013 (AqBD vs F)	-7.51	2.38	29	-0.3	3.28	30	19.6%	-2.48 [-3.16, -1.79]		
Wang et al., 2010 (TC vs F)	-З.б	3.5	33	-0.7	2	33	21.1%	-1.01 [-1.52, -0.49]		
Calandre et al., 2009 (AC vs F)	-0.91	2.62	32	-0.29	2.43	34	21.3%	-0.24 [-0.73, 0.24]		
Wang et al., 2018 (TC vs A)	-2.1	5.1	36	-1.1	4.09	75	21.9%	-0.22 [-0.62, 0.17]		
Norregaard et al., 1997 (BA vs A)	0	2.3	11	0	2	5	16.2%	0.00 [-1.06, 1.06]	_	
Total (95% CI)			141			177	100.0%	-0.80 [-1.57, -0.02]		
Heterogeneity: Tau² = 0.67; Chi² = 37.39, df = 4 (P < 0.00001); l² = 89%										
Test for overall effect: $Z = 2.02$ (P = 0.04)										

	Exercise	(Experime	ental)	Usual (care (Con	trol)		Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	
1.1.1 Type of intervention (only exercise)									
Wong et al., 2018 (M-TC; L-B)	-2.4	0.74	17	0.02	1.43	14	3.3%	-2.13 [-3.04, -1.23]	•
Alentorn-Geli et al., 2008 (A & F; L-B)	43	13.3	12	76	18.9	10	2.7%	-1.98 [-3.03, -0.92]	←
Etnier et al., 2009 (F & R; L-B)	59.6	17.1	8	87.6	17.1	8	2.3%	-1.55 [-2.71, -0.39]	•
Wigers et al., 1996 (A; L–B)	-27	32.48	16	3	39.35	17	4.5%	-0.81 [-1,52, -0.10]	←
Valkeinen et al., 2008 (A & R; L-B)	-19.08	35.09	13	8.27	32.03	11	3.7%	-0.78 [-1,62, 0.06]	←
Hakkinen et al., 2001 (R; L-B)	-19	35.02	11	1	4.35	10	3.4%	-0.75 [-1.64, 0.14]	← →
Carson et al., 2010 (M-Y; L-B)	-1.6	3.3	22	0.32	2.73	26	5.5%	-0.63 [-1.21, -0.05]	←
Tomas-Carus et al., 2007 (A; W-B)	-1.5	3.12	17	0.3	3.09	17	4.7%	-0.57 [-1.25, 0.12]	· ·
McBeth et al., 2012 (A; L-B)	-3.6	6.24	92	-0.9	7.88	44	7.7%	-0.39 [-0.76, -0.03]	
Collado-Mateo et al., 2016 (A & R; L-B)	-0.64	2.99	41	0.22	2.66	35	6.7%	-0.30 [-0.75, 0.15]	
Assumpção et al., 2018 (R; L–B)	-1.93	4.2	16	-0.27	7.5	7	3.4%	-0.30 [-1.19, 0.59]	•
Da Silva et al., 2017 (A & F; L-B)	-0.5	1,46	20	-0.1	1,46	10	4.2%	-0.27 [-1.03, 0.50]	•
Assumpção et al., 2018 (F; L-B)	-1.58	2,91	14	-0.27	7.5	7	3.3%	-0.26 [-1.17, 0.65]	•
McBeth et al., 2012 (A; L-B; Co-CBT)	-2.7	7.5	94	-0.9	7.88	44	7.7%	-0.23 [-0.59, 0.12]	
Van Santen et al., 2002 (A, B, F & R; L-B)	-5.1	16.14	37	-1.9	15.39	28	6.4%	-0.20 [-0.69, 0.29]	
Schachter et al., 2003 (A, longer bouts; L-B)	-0.5	2.41	51	-0.5	3.45	18	5.9%	0.00 [-0.54, 0.54]	-
Schachter et al., 2003 (A, shorter bouts; L-B)	-0.3	2.79	56	-0.5	3.45	18	6.0%	0.07 [-0.46, 0.60]	
Tomas Carus et al., 2008 (A; W-B)	-0.6	3.07	15	-1.2	2.98	15	4.5%	0.19 [-0.52, 0.91]	
Subtotal (95% CI)			552			339	85.9%	-0.49 [-0.72, -0.26]	
Heterogeneity: $Tau^2 = 0.13$; $Chi^2 = 39.41$, df =	17 (P = 0.0	002); l ² =	57%						
Test for overall effect: $Z = 4.16$ (P < 0.0001)									
1.1.2 Remaining studies (mixed interventions									
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1.13	20	-0.1	1.46	10		-0.86 [-1.65, -0.07]	
Mannerkorpi et al., 2000 (A & F; W-B; Co-edu)	-0.9	2.35	20		3.41	30		-0.26 [-0.83, 0.31]	-
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)	-4.8	16.39		-1.42	10.43	12		-0.23 [-0.95, 0.49]	
Subtotal (95% CI)			60			52	14.1%	-0.39 [-0.78, -0.01]	
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 1.74$, df = 2	(P = 0.42)	; 4 = 0%							
Test for overall effect: $Z = 1.99 (P = 0.05)$									
Total (95% CI)			612			391	100.0%	-0.47 [-0.67, -0.27]	
Heterogeneity: Tau ² = 0.10; Chi ² = 41.16, df =	20 /P = 0 /	0.422				331	100.070	-0.47 [-0.07, -0.27]	
	20 (F = 0.0)	JU4), I* =	5 176						-1 -0
Test for overall effect: $Z = 4.55$ (P < 0.00001) Test for subgroup differences: $Chi^2 = 0.17$ of $-$	1/0 - 0.5	0, 12	/						Favoi
Test for subgroup differences: $Chi^2 = 0.17$, df =	T(L = 0.0	8), F = 0%	ò						

	Favou	rs (Exerc	ise)	Usual (care (Con	trol)		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.1.1 Type of exercise (meditative exercise pre	ograms))								
Wong et al., 2018 (M-TC; L-B)	-2.4	0.74	17	0.02	1.43	14	3.3%	-2.13 [-3.04, -1.23]	←
Carson et al., 2010 (M-Y; L-B)	-1.6	3.3	22	0.32	2.73	26	5.5%	-0.63 [-1.21, -0.05]	
Subtotal (95% CI)			39			40	8.9%	-1.34 [-2.81, 0.13]	
Heterogeneity: $Tau^2 = 0.98$; $Chi^2 = 7.49$, df = 1	(P = 0.00)	06); I ² =	87%						
Test for overall effect: $Z = 1.78 (P = 0.07)$									
112 Remaining studies (i.e. did ast involve									
1.1.2 Remaining studies (i.e., did not involve									
Alentorn-Geli et al., 2008 (A & F; L-B)	43	13.3	12	76	18.9	10		-1.98 [-3.03, -0.92]	
Etnier et al., 2009 (F & R; L-B)	59.6	17.1	8	87.6	17.1	8		-1.55 [-2.71, -0.39]	• • • • • • • • • • • • • • • • • • • •
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1.13	20	-0.1	1.46	10		-0.86 [-1.65, -0.07]	
Wigers et al., 1996 (A; L-B)	-27	32.48	16	3	39.35	17		-0.81 [-1.52, -0.10]	
Valkeinen et al., 2008 (A & R; L-B)	-19.08		13	8.27	32.03	11	3.7%	-0.78 [-1.62, 0.06]	
Hakkinen et al., 2001 (R; L-B)	-19	35.02	11	1	4.35	10	3.4%	-0.75 [-1.64, 0.14]	
Tomas-Carus et al., 2007 (A; W-B)	-1.5	3.12	17	0.3	3.09	17	4.7%	-0.57 [-1.25, 0.12]	
McBeth et al., 2012 (A; L-B)	-3.6	6.24	92	-0.9	7.88	44	7.7%		
Collado-Mateo et al., 2016 (A & R; L-B)	-0.64	2.99	41	0.22	2.66	35	6.7%	-0.30[-0.75, 0.15]	
Assumpção et al., 2018 (R; L-B)	-1.93	4.2	16	-0.27	7.5	7	3.4%	-0.30 [-1.19, 0.59]	
Da Silva et al., 2017 (A & F; L-B)	-0.5	1.46	20	-0.1	1.46	10	4.2%	-0.27 [-1.03, 0.50]	
Mannerkorpi et al., 2000 (A & F; W-B; Co-edu)	-0.9	2.35	20	-0.1	3.41	30	5.6%	-0.26 [-0.83, 0.31]	
Assumpção et al., 2018 (F; L-B)	-1.58	2.91	14	-0.27	7.5	7	3.3%	-0.26 [-1.17, 0.65]	
McBeth et al., 2012 (A; L-B; Co-CBT)	-2.7	7.5	94	-0.9	7.88	44	7.7%	-0.23 [-0.59, 0.12]	
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)	-4.8	16.39	20	-1.42	10.43	12	4.5%	-0.23 [-0.95, 0.49]	
Van Santen et al., 2002 (A, B, F & R; L-B)	-5.1	16.14	37	-1.9	15.39	28	6.4%	-0.20 [-0.69, 0.29]	
Schachter et al., 2003 (A, longer bouts; L-B)	-0.5	2.41	51	-0.5	3.45	18	5.9%	0.00 [-0.54, 0.54]	
Schachter et al., 2003 (A, shorter bouts; L-B)	-0.3	2.79	56	-0.5	3.45	18	6.0%	0.07 [-0.46, 0.60]	
Tomas Carus et al., 2008 (A; W-B)	-0.б	3.07	15	-1.2	2.98	15		0.19 [-0.52, 0.91]	
Subtotal (95% CI)		_	573			351	91.1%	-0.37 [-0.55, -0.20]	◆
Heterogeneity. Tau ² = 0.04; Chi ² = 25.88, df =	18 (P = 0	(.10); I ² =	= 30%						
Test for overall effect: $Z = 4.19 (P < 0.0001)$									
Total (95% CI)			612			391	100.0%	-0.47 [-0.67, -0.27]	
Heterogeneity: $Tau^2 = 0.10$; $Chi^2 = 41.16$, df =	20 /P = 0	0043-12				351	100.0/0	0.47 [-0.07, -0.27]	
	20 (P = 0	004), 1	= 51%						-2 -1 0 1 2
Test for overall effect: $Z = 4.55$ (P < 0.00001)	1 /0 ^	201-12	20 70/						Favours (Exercise) Favours (Usual care)
Test for subgroup differences: Chi ² = 1.63, df =	I(P = 0.	20), I° =	38.7%						

	Favou	rs (Exerc	ise)	Usual o	care (Con	trol)	1	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.1.1 Sample size (at least, 20 participants/gro	oup)								
Carson et al., 2010 (M-Y; L-B)	-1.6	3.3	22	0.32	2.73	26	5.5%	-0.63 [-1.21, -0.05] 4	
McBeth et al., 2012 (A; L-B)	-3.6	6.24	92	-0.9	7.88	44	7.7%	-0.39 [-0.76, -0.03]	
Collado-Mateo et al., 2016 (A & R; L-B)	-0.64	2.99	41	0.22	2.66	35	6.7%	-0.30 [-0.75, 0.15]	
Mannerkorpi et al., 2000 (A & F; W-B; Co-edu)	-0.9	2.35	20	-0.1	3.41	30	5.6%	-0.26 [-0.83, 0.31]	
McBeth et al., 2012 (A; L-B; Co-CBT)	-2.7	7.5	94	-0.9	7.88	44	7.7%	-0.23 [-0.59, 0.12]	
Van Santen et al., 2002 (A, B, F & R; L-B)	-5.1	16.14	37	-1.9	15.39	28	6.4%	-0.20 [-0.69, 0.29]	
Subtotal (95% CI)			306			207	39.6%	-0.32 [-0.50, -0.14]	
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 1.74$, df = 5	(P = 0.88)	$B); ^2 = 0$	%						
Test for overall effect: $Z = 3.47$ (P = 0.0005)									
1.1.2 Remaining studies (group(s) with fewer t	-	-							
Wong et al., 2018 (M-TC; L-B)	-2.4	0.74	17	0.02	1,43	14		-2.13 [-3.04, -1.23] 🖣	
Alentorn-Geli et al., 2008 (A & F; L-B)	43	13.3	12	76	18,9	10		-1.98 [-3.03, -0.92] 👎	
Etnier et al., 2009 (F & R; L-B)	59.6	17.1	8	87.6	17.1	8		-1.55 [-2.71, -0.39] 🕈	
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1.13	20	-0.1	1.46	10		-0.86 [-1.65, -0.07] 🕇	
Wigers et al., 1996 (A; L–B)		32.48	16	3	39.35	17		-0.81 [-1.52, -0.10] 🕇	
Valkeinen et al., 2008 (A & R; L-B)	-19.08		13	8.27		11		-0.78 [-1.62, 0.06] 👎	
Hakkinen et al., 2001 (R; L-B)		35.02	11	1	4.35	10	3.4%	-0.75 [-1.64, 0.14] 👎	
Tomas-Carus et al., 2007 (A; W-B)	-1.5	3.12	17	0.3	3.09	17	4.7%	-0.57 [-1.25, 0.12] 🕇	
Assumpção et al., 2018 (R; L-B)	-1.93	4.2	16	-0.27	7.5	7		-0.30 [-1.19, 0.59] 👎	
Da Silva et al., 2017 (A & F; L-B)	-0.5	1.46	20	-0.1	1.46	10			
Assumpção et al., 2018 (F; L-B)	-1.58	2.91	14	-0.27	7.5	7		-0.26[-1.17, 0.65] 👎	•
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)		16.39	20	-1.42	10.43	12		-0.23 [-0.95, 0.49]	
Schachter et al., 2003 (A, longer bouts; L-B)		2.41	51	-0.5	3.45	18			
Schachter et al., 2003 (A, shorter bouts; L–B)		2.79		-0.5		18			
Tomas Carus et al., 2008 (A; W-B)	-0.б	3.07	15	-1.2	2.98	15			
Subtotal (95% CI)			306			184	60.4%	-0.60 [-0.93, -0.27]	
Heterogeneity: $Tau^2 = 0.26$; $Chi^2 = 38.00$, df = 3	14 (P = O	.0005);	l² = 63%	6					
Test for overall effect: $Z = 3.59 (P = 0.0003)$									
Total (95% CI)			612			301	100.0%	-0.47 [-0.67, -0.27]	
	0 /P 0	0042.12				391	100.0/0	0.47 [-0.07, -0.27]	
Heterogeneity: $Tau^2 = 0.10$; $Chi^2 = 41.16$, $df = 3$	20 (P = 0	.004); 1	= 51%					-	-1 -0.5 0 0.5 1
Test for overall effect: $Z = 4.55$ (P < 0.00001)	1 (D)	1 4 12	E 4 662						Favours (Exercise) Favours (Usual care)
Test for subgroup differences: $Chi^2 = 2.17$, df =	1 (P = 0.	14), l* =	54.0%						

	Favou	rs (Exerc	ise)	Usual o	care (Con	trol)	1	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.1.1 Land-based exercise									
Wong et al., 2018 (M-TC; L-B)	-2.4	0.74	17	0.02	1.43	14	3.3%	-2.13 [-3.04, -1.23] 🖣	
Alentorn–Geli et al., 2008 (A & F; L–B)	43	13.3	12	76	18.9	10	2.7%	-1.98 [-3.03, -0.92] 🗲	-
Etnier et al., 2009 (F & R; L-B)	59.6	17.1	8	87.6	17.1	8	2.3%	-1.55 [-2.71, -0.39] ←	
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1.13	20	-0.1	1.46	10	4.0%	-0.86 [-1.65, -0.07] 🗲	
Wigers et al., 1996 (A; L–B)	-27	32.48	16	3	39.35	17	4.5%	-0.81 [-1.52, -0.10] 🗲	
Valkeinen et al., 2008 (A & R; L-B)	-19.08	35.09	13	8.27	32.03	11	3.7%	-0.78 [-1.62, 0.06] 🗲	
Hakkinen et al., 2001 (R; L-B)	-19	35.02	11	1	4.35	10	3.4%	-0.75 [-1.64, 0.14] 🕂	
Carson et al., 2010 (M-Y; L-B)	-1.6	3.3	22	0.32	2.73	26	5.5%	-0.63 [-1.21, -0.05] ←	-
McBeth et al., 2012 (A; L-B)	-3.6	6.24	92	-0.9	7.88	44	7.7%	-0.39 [-0.76, -0.03]	
Collado-Mateo et al., 2016 (A & R; L-B)	-0.64	2.99	41	0.22	2.66	35	6.7%	-0.30 [-0.75, 0.15]	
Assumpção et al., 2018 (R; L-B)	-1.93	4.2	16	-0.27	7.5	7	3.4%	-0.30 [-1.19, 0.59] 🗲	
Da Silva et al., 2017 (A & F; L-B)	-0.5	1.46	20	-0.1	1.46	10	4.2%	-0.27 [-1.03, 0.50] 🗲	
Assumpção et al., 2018 (F; L-B)	-1.58	2.91	14	-0.27	7.5	7	3.3%	-0.26 [-1.17, 0.65] 🗲	
McBeth et al., 2012 (A; L-B; Co-CBT)	-2.7	7.5	94	-0.9	7.88	44	7.7%	-0.23 [-0.59, 0.12]	
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)	-4.8	16.39	20	-1.42	10.43	12	4.5%	-0.23 [-0.95, 0.49]	
Van Santen et al., 2002 (A, B, F & R; L-B)	-5.1	16.14	37	-1.9	15.39	28	6.4%	-0.20 [-0.69, 0.29]	
Schachter et al., 2003 (A, longer bouts; L-B)	-0.5	2.41	51	-0.5	3.45	18	5.9%	0.00 [-0.54, 0.54]	
Schachter et al., 2003 (A, shorter bouts; L–B)	-0.3	2.79	56	-0.5	3.45	18	6.0%	0.07 [-0.46, 0.60]	
Subtotal (95% CI)			560			329	85.2%	-0.52 [-0.75, -0.29]	
Heterogeneity: $Tau^2 = 0.12$; $Chi^2 = 38.00$, df =	17 (P = 0	(.002); I ²	= 55%						
Test for overall effect: Z = 4.48 (P < 0.00001)									
1.1.2 Remaining studies (i.e., water-based exe	rcise)								
Tomas-Carus et al., 2007 (A; W-B)	-1.5	3.12	17	0.3	3.09	17	4.7%	-0.57 [-1.25, 0.12] 🗲	
Mannerkorpi et al., 2000 (A & F; W-B; Co-edu)	-0.9	2.35	20	-0.1	3.41	30	5.6%	-0.26 [-0.83, 0.31]	
Tomas Carus et al., 2008 (A; W-B)	-0.6	3.07	15	-1.2	2.98	15		0.19 [-0.52, 0.91]	
Subtotal (95% CI)			52			62	14.8%	-0.23 [-0.62, 0.17]	
Heterogeneity: $Tau^2 = 0.01$; $Chi^2 = 2.26$, $df = 2$	(P = 0.37)	2); $l^2 = 1$.2%						
Test for overall effect: $Z = 1.11 (P = 0.27)$									
Total (95% CI)		_	612			391	100.0%	-0.47 [-0.67, -0.27]	
Heterogeneity: $Tau^2 = 0.10$; $Chi^2 = 41.16$, df =	20 (P = 0	.004); I ²	= 51%					Ŀ	
Test for overall effect: $Z = 4.55$ (P < 0.00001)									Favours (Exercise) Favours (Usual care)
Test for subgroup differences: $Chi^2 = 1.59$, df =	1 (P = 0.	21), $ ^2 =$	37.1%						

	Favou	ırs (Exerc	cise)	Usual /	care (Con	itrol)	1	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.1.1 Training intensity (from low to moderate)	<i>±</i>)								
Wong et al., 2018 (M-TC; L-B)	-2.4	0.74	17	0.02	1.43	14	3.3%	-2.13 [-3.04, -1.23]	▲
Etnier et al., 2009 (F & R; L-B)	59.6	17.1	8	87.6	17.1	8		-1.55 [-2.71, -0.39]	
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1.13	20	-0.1	1.46	10		-0.86 [-1.65, -0.07]	
Wigers et al., 1996 (A; L–B)	-27	32.48	16	3	39.35	17	4.5%	-0.81 [-1.52, -0.10]	←
Carson et al., 2010 (M–Y; L–B)	-1.6	3.3	22	0.32	2.73	26		-0.63 [-1.21, -0.05]	
Tomas-Carus et al., 2007 (A; W-B)	-1.5	3.12	17	0.3	3.09	17	4.7%	-0.57 [-1.25, 0.12]	
Collado-Mateo et al., 2016 (A & R; L-B)	-0.64	2.99	41	0.22	2.66	35	6.7%	-0.30 [-0.75, 0.15]	
Assumpção et al., 2018 (R; L-B)	-1.93	4.2	16	-0.27	7.5	7	3.4%	-0.30 [-1.19, 0.59]	•
Mannerkorpi et al., 2000 (A & F; W-B; Co-edu)	-0.9	2.35	20	-0.1	3.41	30	5.6%	-0.26 [-0.83, 0.31]	
Assumpção et al., 2018 (F; L-B)	-1.58		14	-0.27	7.5	7	3.3%	-0.26 [-1.17, 0.65]	• • •
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)			20	-1.42	10.43	12	4.5%	-0.23 [-0.95, 0.49]	
Van Santen et al., 2002 (A, B, F & R; L-B)	-5.1	16.14	37			28		-0.20 [-0.69, 0.29]	
Schachter et al., 2003 (A, longer bouts; L-B)	-0.5		51			18	5.9%	0.00 [-0.54, 0.54]	
Schachter et al., 2003 (A, shorter bouts; L-B)	-0.3		56	-0.5	3.45	18	6.0%	0.07 [-0.46, 0.60]	
Subtotal (95% CI)			355			247	66.2%		
Heterogeneity: $Tau^2 = 0.12$; $Chi^2 = 27.69$, df = 1	13 (P = C	0.01); l ²	= 53%						
Test for overall effect: $Z = 3.61 (P = 0.0003)$									
1.1.2 Training intensity (from moderate to high	, h)								
Alentorn-Geli et al., 2008 (A & F; L-B)	43			76	18.9	10	2.7%	-1.98 [-3.03, -0.92]	←
Valkeinen et al., 2008 (A & R; L-B)	-19.08	35.09	13	8.27	32.03	11	3.7%	-0.78 [-1.62, 0.06]	← =
Hakkinen et al., 2001 (R; L–B)	-19	35.02	11	1	4.35	10	3.4%	-0.75 [-1.64, 0.14]	<
McBeth et al., 2012 (A; L-B)	-3.6	6.24	92	-0.9	7.88	44	7.7%	-0.39 [-0.76, -0.03]	
Da Silva et al., 2017 (A & F; L-B)	-0.5	1.46	20	-0.1	1.46	10	4.2%	-0.27 [-1.03, 0.50]	•
McBeth et al., 2012 (A; L-B; Co-CBT)	-2.7	7.5	94	-0.9	7.88	44	7.7%	-0.23 [-0.59, 0.12]	
Tomas Carus et al., 2008 (A; W–B)	-0.б	3.07	15	-1.2	2.98			0.19 [-0.52, 0.91]	
Subtotal (95% CI)			257			144	33.8%	-0.47 [-0.83, -0.12]	
Heterogeneity: $Tau^2 = 0.11$; $Chi^2 = 13.46$, $df = 6$	δ (P = 0. ⁷	$(04); ^2 =$	55%						
Test for overall effect: $Z = 2.60 (P = 0.009)$									
Total (95% CI)			612			391	100.0%	-0.47 [-0.67, -0.27]	
Heterogeneity: $Tau^2 = 0.10$; $Chi^2 = 41.16$, df = 2	20 (P = C	3.004); I ²	² = 51%	<i>k</i>				•	
Test for overall effect: $Z = 4.55$ (P < 0.00001)									-1 -0.5 0 0.5 1 Equation (Exercise) Equation (Usual care)
Test for subaroup differences: $Chi^2 = 0.00$, df = 1	1 (P - 0)	aan 12 -	- 0%						Favours (Exercise) Favours (Usual care)

Test for subgroup differences: $Chi^2 = 0.00$, df = 1 (P = 0.99), $l^2 = 0\%$

	Favou	's (Exerc	ise)	Usual o	care (Con	trol)		Std. Mean Difference	Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
1.1.1 Type of exercise (involved aerobic)											
Alentorn–Geli et al., 2008 (A & F; L–B)	43	13.3	12	76	18.9	10	2.7%	-1.98 [-3.03, -0.92]	←		
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1.13	20	-0.1	1.46	10	4.0%	-0.86 [-1.65, -0.07]	•		
Wigers et al., 1996 (A; L-B)	-27	32.48	16	3	39.35	17	4.5%	-0.81 [-1.52, -0.10]	←		
Valkeinen et al., 2008 (A & R; L-B)	-19.08	35.09	13	8.27	32.03	11	3.7%	-0.78 [-1.62, 0.06]	• • •		
Tomas-Carus et al., 2007 (A; W-B)	-1.5	3.12	17	0.3	3.09	17	4.7%	-0.57 [-1.25, 0.12]			
McBeth et al., 2012 (A; L-B)	-3.6	6.24	92	-0.9	7.88	44	7.7%	-0.39 [-0.76, -0.03]			
Collado-Mateo et al., 2016 (A & R; L-B)	-0.64	2.99	41	0.22	2.66	35	6.7%	-0.30 [-0.75, 0.15]			
Da Silva et al., 2017 (A & F; L-B)	-0.5	1.46	20	-0.1	1.46	10	4.2%	-0.27 [-1.03, 0.50]			
Mannerkorpi et al., 2000 (A & F; W-B; Co-edu)	-0.9	2.35	20	-0.1	3.41	30	5.6%	-0.26 [-0.83, 0.31]			
Assumpção et al., 2018 (F; L–B)	-1.58	2.91	14	-0.27	7.5	7	3.3%	-0.26 [-1.17, 0.65]			
McBeth et al., 2012 (A; L-B; Co-CBT)	-2.7	7.5	94	-0.9	7.88	44	7.7%	-0.23 [-0.59, 0.12]			
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)	-4.8	16.39	20	-1.42	10.43	12	4.5%	-0.23 [-0.95, 0.49]			
Van Santen et al., 2002 (A, B, F & R; L-B)	-5.1	16.14	37	-1.9	15.39	28	6.4%	-0.20 [-0.69, 0.29]			
Schachter et al., 2003 (A, longer bouts; L-B)	-0.5	2.41	51	-0.5	3.45	18	5.9%	0.00 [-0.54, 0.54]			
Schachter et al., 2003 (A, shorter bouts; L-B)	-0.3	2.79	56	-0.5	3.45	18	6.0%	0.07 [-0.46, 0.60]			
Tomas Carus et al., 2008 (A; W-B)	-0.б	3.07	15	-1.2	2.98	15	4.5%				
Subtotal (95% CI)			538			326	82.0%	-0.33 [-0.51, -0.16]	◆		
Heterogeneity: $Tau^2 = 0.03$; $Chi^2 = 20.76$, df =	15 (P = 0	.14); I ² =	= 28%								
Test for overall effect: $Z = 3.72$ (P = 0.0002)											
1.1.2 Remaining studies (i.e., did not involve a	aerohic ex	(arcise)									
			17	0.00	1 45	14	ev		<u> </u>		
Wong et al., 2018 (M-TC; L-B) Etnior et al., 2000 (F.B. B; L.B)	-2.4		17	0.02	1,43	14		-2.13 [-3.04, -1.23]			
Etnier et al., 2009 (F & R; L-B)	59.6	17.1	8	87.6	17.1	8					
Hakkinen et al., 2001 (R; L-B) Corson et al., 2010 (M, X; L-B)		35.02	11	1	4.35	10		-0.75 [-1.64, 0.14]			
Carson et al., 2010 (M-Y; L-B)		3.3		0.32		26		-0.63 [-1.21, -0.05]			
Assumpção et al., 2018 (R; L-B) Subtotal (95% CI)	-1.93	4.2	16 74	-0.27	7.5	7 65		-0.30 [-1.19, 0.59] -1.02 [-1.66, -0.39]			
	4 /0 - 0 /	121-12				05	10.070	-1.02 [-1.00, -0.35]			
Heterogeneity: $Tau^2 = 0.33$; $Chi^2 = 10.96$, $df = Tast for every ll effect: 7 = 3.15 (P = 0.003)$	4(P = 0.0)	JS], I⁻ =	64%								
Test for overall effect: $Z = 3.15$ (P = 0.002)											
Total (95% CI)			612			391	100.0%	-0.47 [-0.67, -0.27]			
Heterogeneity: $Tau^2 = 0.10$; $Chi^2 = 41.16$, df =	20 (P = 0	0041 ⁻ 1 ²									
Test for overall effect: $Z = 4.55$ (P < 0.00001)	- v v - v		5 1/0						-1 -0.5 0 0.5 1		
Test for subgroup differences: $Chi^2 = 4.22$, df =	1 (P = 0)	041 I ² -	76.3%						Favours (Exercise) Favours (Usual care)		
rescronsubgroup unrerences. Chr. = 4.22, ur =	T (r = 0)	∨=), i* =	70.370								

	Favou	rs (Exerc	ise)	Usual o	care (Con	trol)	Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.1.1 Length of the intervention (at least, 24 v	veeks)								
McBeth et al., 2012 (A; L-B)	-3.6	6.24	92	-0.9	7.88	44	7.7%	-0.39 [-0.76, -0.03]	e
Collado-Mateo et al., 2016 (A & R; L-B)	-0.64	2.99	41	0.22	2.66	35	6.7%	-0.30 [-0.75, 0.15]	
Mannerkorpi et al., 2000 (A & F; W-B; Co-edu)	-0.9	2.35	20	-0.1	3.41	30	5.6%	-0.26 [-0.83, 0.31]	
McBeth et al., 2012 (A; L-B; Co-CBT)	-2.7	7.5	94	-0.9	7.88	44	7.7%	-0.23 [-0.59, 0.12]	
Van Santen et al., 2002 (A, B, F & R; L-B)	-5.1	16.14	37	-1.9	15.39	28	6.4%	-0.20 [-0.69, 0.29]	
Tomas Carus et al., 2008 (A; W-B)	-0.6	3.07	15	-1.2	2.98	15	4.5%	0.19 [-0.52, 0.91]	
Subtotal (95% CI)			299			196	38.6%	-0.26 [-0.44, -0.07]	
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 2.16$, df = 5	(P = 0.83)	3); l ² = 0	%						
Test for overall effect: $Z = 2.72$ (P = 0.006)									
1.1.2 Remaining studies (i.e., interventions las									
Wong et al., 2018 (M-TC; L-B)	-2.4	0.74	17	0.02	1,43	14		-2.13 [-3.04, -1.23] 🐧	
Alentorn-Geli et al., 2008 (A & F; L-B)	43	13.3	12	76	18.9	10		-1.98 [-3.03, -0.92] +	
Etnier et al., 2009 (F & R; L-B)	59.6	17.1	8	87.6	17.1	8		-1.55 [-2.71, -0.39] 🕂	
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1.13	20	-0.1	1.46	10		-0.86 [-1.65, -0.07] +	
Wigers et al., 1996 (A; L-B)		32.48	16	3	39.35	17	4.5%	-0.81 [-1.52, -0.10] 🕂	
Valkeinen et al., 2008 (A & R; L-B)	-19.08		13	8.27	32.03	11		. , .	
Hakkinen et al., 2001 (R; L-B)		35.02	11	1	4.35	10	3.4%		
Carson et al., 2010 (M-Y; L-B)	-1.6	3.3	22	0.32	2.73	26	5.5%	-0.63 [-1.21, -0.05] +	
Tomas-Carus et al., 2007 (A; W-B)	-1.5	3.12	17	0.3	3.09	17	4.7%	-0.57 [-1.25, 0.12] 🕂	
Assumpção et al., 2018 (R; L-B)	-1.93	4.2	16	-0.27	7.5	7	3.4%	-0.30 [-1.19, 0.59] 🕂	
Da Silva et al., 2017 (A & F; L-B)	-0.5	1.46	20	-0.1	1.46	10	4.2%	-0.27 [-1.03, 0.50] 🗲	
Assumpção et al., 2018 (F; L-B)	-1.58		14	-0.27	7.5	7			
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)		16.39	20		10.43	12		. , .	
Schachter et al., 2003 (A, longer bouts; L-B)	-0.5	2.41	51	-0.5	3.45	18	5.9%		
Schachter et al., 2003 (A, shorter bouts; L-B)	-0.3	2.79	56	-0.5	3.45	18	6.0%	0.07 [-0.46, 0.60]	
Subtotal (95% CI)		_	313			195	61.4%	-0.65 [-0.96, -0.35] -	
Heterogeneity: $Tau^2 = 0.21$; $Chi^2 = 34.40$, df =	14 (P = 0	0.002); I ²	= 59%						
Test for overall effect: $Z = 4.15$ (P < 0.0001)									
Total (95% CI)			612			301	100.0%	-0.47 [-0.67, -0.27]	
		0042-12				391	100.0/0	0.47 [-0.07, -0.27]	
Heterogeneity: $Tau^2 = 0.10$; $Chi^2 = 41.16$, df =	20 (P = 0	.004); P	= 51%						1 -0.5 0 0.5 1
Test for overall effect: $Z = 4.55$ (P < 0.00001)	1 (D)	ADX 12	70.00						Favours (Exercise) Favours (Usual care)
Test for subgroup differences: $Chi^2 = 4.71$, df =	1 (P = 0.	03), l4 =	78.8%						

	Exercise	(Experime	Usual (care (Cor	itrol)		Std. Mean Difference	St	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IN
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1.13	20	-0.1	1.46	10	4.2%	-0.86 [-1.65, -0.07]	← •
Lynch et al., 2012 (M-QG; L-B)	-3.04	3.75	44	-0.62	3.02	45	13.2%	-0.71 [-1.13, -0.28]	←
Da Silva et al., 2017 (A & F; L-B)	-0.6	1.46	20	0	2.46	10	4.5%	-0.32 [-1.08, 0.45]	←
Carson et al., 2010 (M-Y; L-B)	-1.44	3.89	22	0.28	7.08	26	7.9%	-0.29 [-0.86, 0.28]	
Hakkinen et al., 2001 (R; L–B)	-10	28.66	11	-3	39.02	10	3.6%	-0.20 [-1.06, 0.66]	←
McBeth et al., 2012 (A; L-B; Co-CBT)	-1.3	7.94	94	0.3	9.4	44	18.0%	-0.19 [-0.55, 0.17]	
Valkeinen et al., 2008 (A & R; L-B)	-4.23	22.25	13	-1.18	22.25	11	4.1%	-0.13 [-0.94, 0.67]	
Wong et al., 2018 (M-TC; L-B)	-0.2	2	17	-0.2	2.1	14	5.2%	0.00 [-0.71, 0.71]	
McBeth et al., 2012 (A; L-B)	0.4	6.07	92	0.3	7.75	44	18.0%	0.01 [-0.34, 0.37]	-
Tomas-Carus et al., 2007 (A; W-B)	0.43	1.57	17	0.34	1.57	17	5.8%	0.06 [-0.62, 0.73]	
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)	-0.5	4.07	20	-0.84	4.6	12	5.1%	0.08 [-0.64, 0.79]	
Sañudo et al., 2015 (A; L-B)	0.2	3.24	16	-0.3	4.21	12	4.7%	0.13 [-0.62, 0.88]	
Wigers et al., 1996 (A; L–B)	10	44.37	16	2	50	17	5.6%	0.16 [-0.52, 0.85]	
Total (95% CI)			402			272	100.0%	-0.19 [-0.35, -0.02]	-
Heterogeneity: $Tau^2 = 0.01$; $Chi^2 = 12.84$, df	= 12 (P =	0.38); l ² =	= 7%						-1 -0.5
Test for overall effect: $Z = 2.22$ (P = 0.03)									Favours (E

Exercise (Experimental)			Usual care (Control)				Std. Mean Difference	Sto
Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	I
-1.2	1.13	20	-0.1	1.46	10	3.6%	-0.86 [-1.65, -0.07]	←
-3.04	3.75	44	-0.62	3.02	45	12.4%	-0.71 [-1.13, -0.28]	< -
-0.6	1.46	20	0	2.46	10	3.9%	-0.32 [-1.08, 0.45]	••
-1.44	3.89	22	0.28	7.08	26	7.0%	-0.29 [-0.86, 0.28]	
-10	28.66	11	-3	39.02	10	3.1%	-0.20 [-1.06, 0.66]	•
-1.3	7.94	94	0.3	9.4	44	17.7%	-0.19 [-0.55, 0.17]	
-4.23	22.25	13	-1.18	22.25	11	3.5%	-0.13 [-0.94, 0.67]	
-0.2	2	17	-0.2	2.1	14	4.5%	0.00 [-0.71, 0.71]	
0.4	6.07	92	0.3	7.75	44	17.6%	0.01 [-0.34, 0.37]	-
0.43	1.57	17	0.34	1.57	17	5.0%	0.06 [-0.62, 0.73]	
0.43	1.18	29	0.34	1.54	28	8.4%	0.06 [-0.45, 0.58]	
-0.5	4.07	20	-0.84	4.6	12	4.4%	0.08 [-0.64, 0.79]	
0.2	3.24	16	-0.3	4.21	12	4.0%	0.13 [-0.62, 0.88]	
10	44.37	16	2	50	17	4.9%	0.16 [-0.52, 0.85]	
		431			300	100.0%	-0.17 [-0.32, -0.02]	
10); I ² = 5%	6							-1 -0.5 Favours (E
	Mean -1.2 -3.04 -0.6 -1.44 -10 -1.3 -4.23 -0.2 0.4 0.43 0.43 0.43 -0.5 0.2 10	MeanSD-1.21.13-3.043.75-0.61.46-1.443.89-1028.66-1.37.94-4.2322.25-0.220.46.070.431.570.431.18-0.54.070.23.24	Mean SD Total -1.2 1.13 20 -3.04 3.75 44 -0.6 1.46 20 -1.44 3.89 22 -10 28.66 11 -1.3 7.94 94 -4.23 22.25 13 -0.2 2 17 0.4 6.07 92 0.43 1.57 17 0.43 1.57 17 0.43 1.48 29 -0.5 4.07 20 0.2 3.24 16 10 44.37 16	MeanSDTotalMean-1.21.1320-0.1-3.043.7544-0.62-0.61.46200-1.443.89220.28-1028.6611-3-1.37.94940.3-4.2322.2513-1.18-0.2217-0.20.46.07920.30.431.57170.340.431.18290.34-0.54.0720-0.840.23.2416-0.31044.37162	MeanSDTotalMeanSD-1.21.1320-0.11.46-3.043.7544-0.623.02-0.61.462002.46-1.443.89220.287.08-1028.6611-339.02-1.37.94940.39.4-4.2322.2513-1.1822.25-0.2217-0.22.10.46.07920.37.750.431.57170.341.570.431.18290.341.54-0.54.0720-0.844.60.23.2416-0.34.211044.3716250	MeanSDTotalMeanSDTotal-1.21.1320-0.11.4610-3.043.7544-0.623.0245-0.61.462002.4610-1.443.89220.287.0826-1028.6611-339.0210-1.37.94940.39.444-4.2322.2513-1.1822.2511-0.2217-0.22.1140.46.07920.37.75440.431.57170.341.57170.431.18290.341.5428-0.54.0720-0.844.6120.23.2416-0.34.21121044.371625017	MeanSDTotalMeanSDTotalWeight-1.21.1320-0.11.46103.6%-3.043.7544-0.623.024512.4%-0.61.462002.46103.9%-1.443.89220.287.08267.0%-1028.6611-339.02103.1%-1.37.94940.39.44417.7%-4.2322.2513-1.1822.25113.5%-0.2217-0.22.1144.5%0.46.07920.37.754417.6%0.431.57170.341.57175.0%0.431.18290.341.54288.4%-0.54.0720-0.844.6124.4%0.23.2416-0.34.21124.0%1044.3716250174.9%	Mean SD Total Mean SD Total Weight IV, Fixed, 95% CI -1.2 1.13 20 -0.1 1.46 10 3.6% -0.86 [-1.65, -0.07] -3.04 3.75 44 -0.62 3.02 45 12.4% -0.71 [-1.13, -0.28] -0.6 1.46 20 0 2.46 10 3.9% -0.32 [-1.08, 0.45] -1.44 3.89 22 0.28 7.08 26 7.0% -0.29 [-0.86, 0.28] -10 28.66 11 -3 39.02 10 3.1% -0.20 [-1.06, 0.66] -1.3 7.94 94 0.3 9.4 44 17.7% -0.19 [-0.55, 0.17] -4.23 22.25 13 -1.18 22.25 11 3.5% -0.01 [-0.34, 0.37] -0.2 2 17 -0.2 2.1 14 4.5% 0.00 [-0.71, 0.71] -0.4 6.07 92 0.3 7.75 44 17.6% 0.006 [-0.45, 0.5

Std. Mean Difference IV, Fixed, 95% CI

	Meditat	Meditative exercise			oes of exe	rcise		Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	
Wang et al., 2010 (TC vs F)	-3.6	3.5	33	-0.7	2	33	28.4%	-1.01 [-1.52, -0.49] 🗲	
Lopez-Rodriguez et al., 2013 (AqBD vs F)	-0.93	2.36	29	-0.2	1.7	30	28.3%	-0.35 [-0.87, 0.16]	
Calandre et al., 2009 (AC vs F)	-0.91	2.62	32	-0.29	2.43	34	29.4%	-0.24 [-0.73, 0.24]	
Norregaard et al., 1997 (BA vs A)	0	1.4	11	-1	2.7	5	13.9%	0.51[-0.57, 1.58]	-
Total (95% CI) Heterogeneity: Tau ² = 0.16; Chi ² = 8.37, dt	f = 3 (P =	0.04);	105 ² = 64%			102	100.0%	-0.39 [-0.88, 0.11]	-1 -(
Test for overall effect: $Z = 1.53$ (P = 0.13)									Favours (Medi

		~
Alentorn-Geli et al., 2008		
Assumpção et al., 2018		
Carson et al., 2010	+	+
Collado-Mateo et al., 2016	+	
Da Silva et al., 2017		
Etnier et al., 2009	•	•
Gianotti et al., 2014	Ŧ	•
Haak et al., 2007	•	
Hakkinen et al., 2001	•	•
Lynch et al., 2012	•	ŧ
Mannerkorpi et al., 2000	•	
McBeth et al., 2012	•	
Sañudo et al., 2015	•	
Schachter et al., 2003	•	
Tomas-Carus et al., 2007	•	
Tomas Carus et al., 2008	•	
Valkeinen et al., 2008	•	
Van Santen et al., 2002	•	•
Wigers et al., 1996	Ŧ	•
Wong et al., 2018	Ŧ	•

Random sequence generation (selection bias)

Allocation concealment (selection bias)

Blinding of participants and personnel (performance bias)

Blinding of outcome assessment (detection bias)

-

Ŧ

+

+

2

8

+ Incomplete outcome data (attrition bias)

Selective reporting (reporting bias)

+

+

+

+ + -

+

Ŧ

Ŧ

÷

÷

+

+

+

Ŧ

+

•

+

Ŧ

+

Ŧ

Ŧ

Ŧ

Ŧ

Ŧ

Ŧ

+

Ŧ

ł

Ŧ

2

Ŧ

Ŧ

Ŧ

+

Ŧ

Ŧ

Ŧ

Ŧ

-

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

Bircan et al.,	2008
Calandre et al.,	2009
da Silva et al.,	2018
Demir-Gocmen et al.,	2013
Fernandes et al.,	2016
Gavi et al.,	2014
Genc et al.,	2015
Jentoft et al.,	2001
Jones et al.,	2002
Kendall et al.,	2000
Lopez-Pousa et al.,	2015
opez-Rodriguez et al,	2013
Mannerkorpi et al.,	2010
McBeth et al.,	2012
Norregaard et al.,	1997
Schachter et al.,	2003
van Santen et al.,	2002
Vitorino et al.,	2006
Wang et al.,	2010
Wang et al.,	2018

L

Assumpçao et al.,

Allocation concealment (selection bias)

Ŧ

Ŧ

+

-

Ŧ

8

Ŧ

Ŧ

Ŧ

+

-

-

Ŧ

Ŧ

+

Ŧ

Ŧ

Random sequence generation (selection bias)

2018

Blinding of participants and personnel (performance bias)

Blinding of outcome assessment (detection bias)

8

8

Ŧ

Ŧ

Ŧ

2

Ξ

Ŧ

Ŧ

Ŧ

Ŧ

E

Ŧ

-

Ŧ

Ŧ

Ŧ

-

+

-

-

-

Ŧ

Ŧ

Ŧ

Ŧ

-

Ŧ

Ŧ

Ŧ

Ŧ

-

-

÷

Ŧ

Incomplete outcome data (attrition bias)

Selective reporting (reporting bias)

Ŧ

Ŧ

Ŧ

Ŧ

Ŧ

Ŧ

Ŧ

Ŧ

+

Ŧ

Ŧ

Ŧ

Ŧ

Ŧ

Ŧ

Ŧ

Ŧ

+

Ŧ

Ŧ

+ + Other bias

+ + +

+ + + +

+

Ŧ

Ŧ

	Exercise (Experimental)			Usual care (Control)				Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	
Wong et al., 2018 (M-TC; L-B)	-2.4	0.74	17	0.02	1.43	14	3.7%	-2.13 [-3.04, -1.23]	•
Alentorn–Geli et al., 2008 (A & F; L–B)	43	13.3	12	76	18.9	10	3.0%	-1.98 [-3.03, -0.92]	←
Etnier et al., 2009 (F & R; L-B)	59.6	17.1	8	87.6	17.1	8	2.6%	-1.55 [-2.71, -0.39]	•
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1.13	20	-0.1	1.46	10	4.3%	-0.86 [-1.65, -0.07]	←
Wigers et al., 1996 (A; L–B)	-27	32.48	16	3	39.35	17	4.9%	-0.81 [-1.52, -0.10]	←
Valkeinen et al., 2008 (A & R; L-B)	-19.08	35.09	13	8.27	32.03	11	4.1%	-0.78 [-1.62, 0.06]	← •
Hakkinen et al., 2001 (R; L-B)	-19	35.02	11	1	4.35	10	3.8%	-0.75 [-1.64, 0.14]	←
Carson et al., 2010 (M-Y; L-B)	-1.6	3.3	22	0.32	2.73	26	5.9%	-0.63 [-1.21, -0.05]	←
Tomas-Carus et al., 2007 (A; W-B)	-1.5	3.12	17	0.3	3.09	17	5.1%	-0.57 [-1.25, 0.12]	← •
McBeth et al., 2012 (A; L–B)	-3.6	6.24	92	-0.9	7.88	44	8.0%	-0.39 [-0.76, -0.03]	
Collado-Mateo et al., 2016 (A & R; L-B)	-0.64	2.99	41	0.22	2.66	35	7.1%	-0.30[-0.75, 0.15]	
Da Silva et al., 2017 (A & F; L-B)	-0.5	1.46	20	-0.1	1.46	10	4.5%	-0.27 [-1.03, 0.50]	•
Mannerkorpi et al., 2000 (A & F; W-B; Co-edu)	-0.9	2.35	20	-0.1	3.41	30	6.0%	-0.26 [-0.83, 0.31]	
McBeth et al., 2012 (A; L-B; Co-CBT)	-2.7	7.5	94	-0.9	7.88	44	8.0%	-0.23 [-0.59, 0.12]	
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)	-4.8	16.39	20	-1.42	10.43	12	4.8%	-0.23 [-0.95, 0.49]	
Van Santen et al., 2002 (A, B, F & R; L–B)	-5.1	16.14	37	-1.9	15.39	28	6.7%	-0.20 [-0.69, 0.29]	
Schachter et al., 2003 (A, longer bouts; L-B)	-0.5	2.41	51	-0.5	3.45	18	6.3%	0.00 [-0.54, 0.54]	
Schachter et al., 2003 (A, shorter bouts; L–B)	-0.3	2.79	56	-0.5	3.45	18	6.4%	0.07 [-0.46, 0.60]	-
Tomas Carus et al., 2008 (A; W-B)	-0.б	3.07	15	-1.2	2.98	15	4.8%	0.19 [-0.52, 0.91]	
Total (95% CI)			582			377	100.0%	-0.49 [-0.71, -0.27]	

Heterogeneity. Tau² = 0.12; Chi² = 41.02, df = 18 (P = 0.002); $I^2 = 56\%$ Test for overall effect: Z = 4.42 (P < 0.00001)

-1

	Exercise (Experimental)			Usual care (Control)				Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	
Wong et al., 2018 (M-TC; L-B)	-2.4	0.74	17	0.02	1.43	14	2.1%	-2.13 [-3.04, -1.23]	•
Alentorn-Geli et al., 2008 (A & F; L-B)	43	13.3	12	76	18.9	10	1.6%	-1.98 [-3.03, -0.92]	←
Etnier et al., 2009 (F & R; L-B)	59.6	17.1	8	87.6	17.1	8	1.3%	-1.55 [-2.71, -0.39]	•
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1.13	20	-0.1	1,46	10	2.8%	-0.86 [-1,65, -0.07]	←
Wigers et al., 1996 (A; L-B)	-27	32.48	16	3	39.35	17	3.5%	-0.81 [-1,52, -0.10]	←
Valkeinen et al., 2008 (A & R; L-B)	-19.08	35.09	13	8.27	32.03	11	2.5%	-0.78 [-1.62, 0.06]	←
Hakkinen et al., 2001 (R; L-B)	-19	35.02	11	1	4.35	10	2.2%	-0.75 [-1.64, 0.14]	←
Carson et al., 2010 (M-Y; L-B)	-1.6	3.3	22	0.32	2.73	26	5.2%	-0.63 [-1.21, -0.05]	←
Tomas-Carus et al., 2007 (A; W-B)	-1.5	3.12	17	0.3	3.09	17	3.7%	-0.57 [-1.25, 0.12]	←
McBeth et al., 2012 (A; L-B)	-3.6	6.24	92	-0.9	7.88	44	13.4%	-0.39 [-0.76, -0.03]	
Collado-Mateo et al., 2016 (A & R; L-B)	-0.64	2.99	41	0.22	2.66	35	8.6%	-0.30 [-0.75, 0.15]	
Assumpção et al., 2018 (R; L–B)	-1.93	4.2	16	-0.27	7.5	7	2.2%	-0.30 [-1.19, 0.59]	•
Da Silva et al., 2017 (A & F; L-B)	-0.5	1.46	20	-0.1	1.46	10	3.0%	-0.27 [-1.03, 0.50]	•
Mannerkorpi et al., 2000 (A & F; W-B; Co-edu)	-0.9	2.35	20	-0.1	3.41	30	5.5%	-0.26 [-0.83, 0.31]	
Assumpção et al., 2018 (F; L-B)	-1,58	2.91	14	-0.27	7.5	7	2.1%	-0.26 [-1.17, 0.65]	•
McBeth et al., 2012 (A; L-B; Co-CBT)	-2.7	7.5	94	-0.9	7.88	44	13.7%	-0.23 [-0.59, 0.12]	
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)	-4.8	16.39	20	-1.42	10.43	12	3.4%	-0.23 [-0.95, 0.49]	
Van Santen et al., 2002 (A, B, F & R; L–B)	-5.1	16.14	37	-1.9	15.39	28	7.3%	-0.20 [-0.69, 0.29]	
Schachter et al., 2003 (A, longer bouts; L-B)	-0.5	2.41	51	-0.5	3.45	18	6.1%	0.00 [-0.54, 0.54]	
Schachter et al., 2003 (A, shorter bouts; L-B)	-0.3	2.79	56	-0.5	3.45	18	6.3%	0.07 [-0.46, 0.60]	-
Tomas Carus et al., 2008 (A; W-B)	-0.б	3.07	15	-1.2	2.98	15	3.4%	0.19 [-0.52, 0.91]	
Total (95% CI)			612			391	100.0%	-0.40 [-0.53, -0.26]	-

Heterogeneity. $Chi^2 = 41.16$, df = 20 (P = 0.004); l² = 51% Test for overall effect: Z = 5.84 (P < 0.00001)

-1 -0.5

Std. Mean Difference IV, Fixed, 95% CI

	Exercise (Experimental)			Usual care (Control)			Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	
1.1.1 Adherence criteria (attendace to, at least	, 80% of th	ie training	g session	ıs)					
Alentorn-Geli et al., 2008 (A & F; L-B)	43	13.3	12	76	18.9	10	2.7%	-1.98 [-3.03, -0.92]	←
Etnier et al., 2009 (F & R; L-B)	59.6	17.1	8	87.6	17.1	8	2.3%	-1.55 [-2.71, -0.39]	•
Tomas-Carus et al., 2007 (A; W-B)	-1.5	3.12	17	0.3	3.09	17	4.7%	-0.57 [-1,25, 0.12]	←
McBeth et al., 2012 (A; L-B)	-3.6	6.24	92	-0.9	7.88	44	7.7%	-0.39 [-0.76, -0.03]	
Collado-Mateo et al., 2016 (A & R; L-B)	-0.64	2.99	41	0.22	2.66	35	6.7%	-0.30 [-0.75, 0.15]	
McBeth et al., 2012 (A; L-B; Co-CBT)	-2.7	7.5	94	-0.9	7.88	44	7.7%	-0.23 [-0.59, 0.12]	
Schachter et al., 2003 (A, longer bouts; L-B)	-0.5	2.41	51	-0.5	3.45	18	5.9%	0.00 [-0.54, 0.54]	_
Schachter et al., 2003 (A, shorter bouts; L–B)	-0.3	2.79	56	-0.5	3.45	18	6.0%	0.07 [-0.46, 0.60]	
Tomas Carus et al., 2008 (A; W-B)	-0.б	3.07	15	-1.2	2.98	15	4.5%	0.19 [-0.52, 0.91]	_
Subtotal (95% CI)			386			209	48.2%	-0.36 [-0.66, -0.06]	
Heterogeneity: $Tau^2 = 0.11$; $Chi^2 = 19.90$, df =	8 (P = 0.0)	1); I ² = 60	%						
Test for overall effect: $Z = 2.37$ (P = 0.02)									
1.1.2 Remaining studies									
Wong et al., 2018 (M-TC; L-B)	-2.4	0.74	17	0.02	1.43	14	3.3%	-2.13 [-3.04, -1.23]	
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1.13	20	-0.1	1.46	10	4.0%	-0.86 [-1.65, -0.07]	←
Wigers et al., 1996 (A; L–B)	-27	32.48	16	3	39.35	17	4.5%	-0.81 [-1.52, -0.10]	← •
Valkeinen et al., 2008 (A & R; L-B)	-19.08	35.09	13	8.27	32.03	11	3.7%	-0.78 [-1.62, 0.06]	←
Hakkinen et al., 2001 (R; L-B)	-19	35.02	11	1	4.35	10	3.4%	-0.75 [-1.64, 0.14]	← ・
Carson et al., 2010 (M-Y; L-B)	-1.6	3.3	22	0.32	2.73	26	5.5%	-0.63 [-1.21, -0.05]	←
Assumpção et al., 2018 (R; L-B)	-1.93	4.2	16	-0.27	7.5	7	3.4%	-0.30 [-1.19, 0.59]	•
Da Silva et al., 2017 (A & F; L-B)	-0.5	1.46	20	-0.1	1.46	10	4.2%	-0.27 [-1.03, 0.50]	
Mannerkorpi et al., 2000 (A & F; W-B; Co-edu)	-0.9	2.35	20	-0.1	3.41	30	5.6%	-0.26 [-0.83, 0.31]	
Assumpção et al., 2018 (F; L-B)	-1.58	2.91	14	-0.27	7.5	7	3.3%		
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)	-4.8	16.39	20	-1.42	10.43	12	4.5%	-0.23 [-0.95, 0.49]	
Van Santen et al., 2002 (A, B, F & R; L-B)	-5.1	16.14	37	-1.9	15.39			-0.20 [-0.69, 0.29]	
Subtotal (95% CI)		_	226			182	51.8%	-0.57 [-0.84, -0.30]	
Heterogeneity: $Tau^2 = 0.09$; $Chi^2 = 18.28$, df =	11 (P = 0.0	08); I ² = 4	-0%						
Test for overall effect: $Z = 4.13$ (P < 0.0001)									
						201	100.00/		
Total (95% CI)			612			391	100.0%	-0.47 [-0.67, -0.27]	
Heterogeneity: $Tau^2 = 0.10$; $Chi^2 = 41.16$, df =	20 (P = 0.0)	004); l² =	51%						-1 -0
Test for overall effect: $Z = 4.55$ (P < 0.00001)									

Test for overall effect: Z = 4.55 (P < 0.00001) Test for subgroup differences: $Chi^2 = 1.07$, df = 1 (P = 0.30), $I^2 = 6.6\%$

	Exercise (Experimental)			Usual care (Control)					
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	
1.1.1 All the participants were women									
Wong et al., 2018 (M-TC; L-B)	-2.4	0.74	17	0.02	1.43	14	3.3%	-2.13 [-3.04, -1.23]	•
Alentorn-Geli et al., 2008 (A & F; L-B)	43	13.3	12	76	18.9	10	2.7%	-1.98 [-3.03, -0.92]	←
Etnier et al., 2009 (F & R; L-B)	59.6	17.1	8	87.6	17.1	8	2.3%	-1.55 [-2.71, -0.39]	•
Da Silva et al., 2017 (A & F; L-B; Co-photo)	-1.2	1,13	20	-0.1	1,46	10	4.0%	-0.86 [-1.65, -0.07]	←
Valkeinen et al., 2008 (A & R; L-B)	-19.08	35.09	13	8.27	32.03	11	3.7%	-0.78 [-1.62, 0.06]	←
Hakkinen et al., 2001 (R; L-B)	-19	35.02	11	1	4.35	10	3.4%	-0.75 [-1.64, 0.14]	←
Tomas-Carus et al., 2007 (A; W-B)	-1.5	3.12	17	0.3	3.09	17	4.7%	-0.57 [-1.25, 0.12]	• •
Collado-Mateo et al., 2016 (A & R; L-B)	-0.64	2.99	41	0.22	2.66	35	6.7%	-0.30 [-0.75, 0.15]	
Assumpção et al., 2018 (R; L–B)	-1.93	4.2	16	-0.27	7.5	7	3.4%	-0.30 [-1.19, 0.59]	•
Da Silva et al., 2017 (A & F; L-B)	-0.5	1.46	20	-0.1	1.46	10	4.2%	-0.27 [-1.03, 0.50]	•
Mannerkorpi et al., 2000 (A & F; W-B; Co-edu)	-0.9	2.35	20	-0.1	3.41	30	5.6%	-0.26 [-0.83, 0.31]	
Assumpção et al., 2018 (F; L–B)	-1.58	2.91	14	-0.27	7.5	7	3.3%	-0.26 [-1,17, 0.65]	•
Van Santen et al., 2002 (A, B, F & R; L–B)	-5.1	16.14	37	-1.9	15.39	28	6.4%	-0.20 [-0.69, 0.29]	
Schachter et al., 2003 (A, longer bouts; L-B)	-0.5	2.41	51	-0.5	3.45	18	5.9%	0.00 [-0.54, 0.54]	-
Schachter et al., 2003 (A, shorter bouts; L-B)	-0.3	2.79	56	-0.5	3.45	18	6.0%	0.07 [-0.46, 0.60]	
Tomas Carus et al., 2008 (A; W-B)	-0.б	3.07	15	-1.2	2.98	15	4.5%	0.19 [-0.52, 0.91]	-
Subtotal (95% CI)			368			248	70.1%	-0.52 [-0.80, -0.23]	
Heterogeneity: Tau ² = 0.19; Chi ² = 38.27, df = 15 (P = 0.0008); l ² = 61%									
Test for overall effect: $Z = 3.57$ (P = 0.0004)									
1.1.2 Remaining studies (both women and me	en participa	ated)							
Wigers et al., 1996 (A; L-B)	-27	32.48	16	3	39.35	17	4.5%	-0.81 [-1.52, -0.10]	←
Carson et al., 2010 (M-Y; L-B)	-1.6	3.3	22	0.32	2.73	26	5.5%	-0.63 [-1.21, -0.05]	←
McBeth et al., 2012 (A; L-B)	-3.6	6.24	92	-0.9	7.88	44	7.7%	-0.39 [-0.76, -0.03]	
McBeth et al., 2012 (A; L-B; Co-CBT)	-2.7	7.5	94	-0.9	7.88	44	7.7%	-0.23 [-0.59, 0.12]	
Gianotti et al., 2014 (A, F & R; L-B; Co-edu)	-4.8	16.39		-1.42	10.43			-0.23 [-0.95, 0.49]	
Subtotal (95% CI)			244			143	29.9%	-0.39 [-0.60, -0.18]	-
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 2.88$, df = 4	(P = 0.58)	; ² = 0%							
Test for overall effect: $Z = 3.62$ (P = 0.0003)									
			612			201	100.0%	0 47 [0 67 0 37]	
Total (95% CI)			612			391	100.0%	-0.47 [-0.67, -0.27]	_
Heterogeneity: $Tau^2 = 0.10$; $Chi^2 = 41.16$, df =	20 (P = 0.0))04); l² =	51%						-1 -0
Test for overall effect: $Z = 4.55$ (P < 0.00001)			,						Favor
Test for subgroup differences: Chi ² = 0.48, df =	1 (P = 0.4)	9), l² = 0%	6						

